論文の概要: Automatically Learning Hybrid Digital Twins of Dynamical Systems
- arxiv url: http://arxiv.org/abs/2410.23691v1
- Date: Thu, 31 Oct 2024 07:28:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 17:01:07.744134
- Title: Automatically Learning Hybrid Digital Twins of Dynamical Systems
- Title(参考訳): 動的システムのハイブリッドディジタル双対の自動学習
- Authors: Samuel Holt, Tennison Liu, Mihaela van der Schaar,
- Abstract要約: Digital Twins (DT)は、現実世界のシステムの状態と時間力学をシミュレートする。
DTは、しばしばデータスカース設定で目に見えない条件に一般化するのに苦労します。
本稿では,HDTwinsを自律的に提案し,評価し,最適化するための進化的アルゴリズム(textbfHDTwinGen$)を提案する。
- 参考スコア(独自算出の注目度): 56.69628749813084
- License:
- Abstract: Digital Twins (DTs) are computational models that simulate the states and temporal dynamics of real-world systems, playing a crucial role in prediction, understanding, and decision-making across diverse domains. However, existing approaches to DTs often struggle to generalize to unseen conditions in data-scarce settings, a crucial requirement for such models. To address these limitations, our work begins by establishing the essential desiderata for effective DTs. Hybrid Digital Twins ($\textbf{HDTwins}$) represent a promising approach to address these requirements, modeling systems using a composition of both mechanistic and neural components. This hybrid architecture simultaneously leverages (partial) domain knowledge and neural network expressiveness to enhance generalization, with its modular design facilitating improved evolvability. While existing hybrid models rely on expert-specified architectures with only parameters optimized on data, $\textit{automatically}$ specifying and optimizing HDTwins remains intractable due to the complex search space and the need for flexible integration of domain priors. To overcome this complexity, we propose an evolutionary algorithm ($\textbf{HDTwinGen}$) that employs Large Language Models (LLMs) to autonomously propose, evaluate, and optimize HDTwins. Specifically, LLMs iteratively generate novel model specifications, while offline tools are employed to optimize emitted parameters. Correspondingly, proposed models are evaluated and evolved based on targeted feedback, enabling the discovery of increasingly effective hybrid models. Our empirical results reveal that HDTwinGen produces generalizable, sample-efficient, and evolvable models, significantly advancing DTs' efficacy in real-world applications.
- Abstract(参考訳): デジタルツイン(Digital Twins、DT)は、現実世界のシステムの状態と時間的ダイナミクスをシミュレートする計算モデルであり、様々な領域にわたる予測、理解、意思決定において重要な役割を果たす。
しかし、DTに対する既存のアプローチは、データスカース設定における見当たらない条件に一般化するのに苦労することが多い。
これらの制限に対処するために、当社の作業は、有効なDTに不可欠なデシラタを確立することから始まります。
Hybrid Digital Twins ($\textbf{HDTwins}$)は、これらの要件に対処するための有望なアプローチであり、機械的および神経的コンポーネントの合成を用いたシステムモデリングである。
このハイブリッドアーキテクチャは、(部分的な)ドメイン知識とニューラルネットワーク表現を同時に利用して、一般化を強化し、モジュラー設計により、進化性を向上させる。
既存のハイブリッドモデルは、データに最適化されたパラメータのみを持つ専門家仕様のアーキテクチャに依存しているが、$\textit{automatically}$ 複雑な検索空間とドメイン事前の柔軟な統合の必要性のため、HDTwinsの指定と最適化は難しいままである。
この複雑さを克服するために,大言語モデル(LLM)を用いてHDTwinsを自律的に提案し,評価し,最適化する進化的アルゴリズム(\textbf{HDTwinGen}$)を提案する。
具体的には、LLMは新しいモデル仕様を反復的に生成し、オフラインツールは出力されたパラメータを最適化するために使用される。
それに対応して、対象とするフィードバックに基づいて提案されたモデルを評価し、進化させ、より効果的なハイブリッドモデルの発見を可能にする。
実験の結果,HDTwinGenは実世界の応用においてDTsの有効性を著しく向上させ,一般化可能,サンプル効率,進化可能なモデルを生成することが明らかとなった。
関連論文リスト
- Hybrid Training Approaches for LLMs: Leveraging Real and Synthetic Data to Enhance Model Performance in Domain-Specific Applications [0.0]
本研究では,超微調整型大規模言語モデル(LLM)のハイブリッドアプローチについて検討する。
転写された実データと高品質な合成セッションを組み合わせたデータセットを利用することで、ドメイン固有の実データの制限を克服することを目的とした。
本研究は,基本基礎モデル,実データで微調整されたモデル,ハイブリッド微調整されたモデルという3つのモデルを評価した。
論文 参考訳(メタデータ) (2024-10-11T18:16:03Z) - Diffusion Model for Data-Driven Black-Box Optimization [54.25693582870226]
我々は、強力な生成AI技術である拡散モデルに注目し、ブラックボックス最適化の可能性について検討する。
本研究では,1)実数値報酬関数のノイズ測定と,2)対比較に基づく人間の嗜好の2種類のラベルについて検討する。
提案手法は,設計最適化問題を条件付きサンプリング問題に再構成し,拡散モデルのパワーを有効活用する。
論文 参考訳(メタデータ) (2024-03-20T00:41:12Z) - Fairer and More Accurate Tabular Models Through NAS [14.147928131445852]
本稿では,多目的ニューラルアーキテクチャサーチ (NAS) とハイパーパラメータ最適化 (HPO) を,表データの非常に困難な領域への最初の応用として提案する。
我々はNASで精度のみに最適化されたモデルが、本質的に公正な懸念に対処できないことをしばしば示している。
公平性、正確性、あるいは両方において、最先端のバイアス緩和手法を一貫して支配するアーキテクチャを作成します。
論文 参考訳(メタデータ) (2023-10-18T17:56:24Z) - Hybrid State Space-based Learning for Sequential Data Prediction with
Joint Optimization [0.0]
本稿では,従来の非線形予測モデルにおいて,ドメイン固有の特徴工学的問題の必要性を緩和するハイブリッドモデルを提案する。
基本モデルに対する新しい状態空間表現を導入し、ハイブリッドやアンサンブルの完全な状態空間表現を提供する。
このような新しい組み合わせと共同最適化により、広く公開されている実生活競合データセットの大幅な改善が示された。
論文 参考訳(メタデータ) (2023-09-19T12:00:28Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
ディープラーニングアルゴリズムは、PDEの高速解を得るための有効な代替手段として登場した。
モデルは通常、ソルバによって生成された合成データに基づいてトレーニングされ、ディスクに格納され、トレーニングのために読み返される。
ディープサロゲートモデルのためのオープンソースのオンライントレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-28T12:02:27Z) - Enhanced multi-fidelity modelling for digital twin and uncertainty
quantification [0.0]
データ駆動モデルは、リアルタイムのアップデートと予測を可能にするデジタルツインにおいて重要な役割を果たす。
利用可能なデータの忠実さと正確なセンサーデータの不足は、しばしば代理モデルの効率的な学習を妨げる。
本稿では,ロバストなマルチフィデリティ・サロゲートモデルの開発から始まる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-26T05:58:17Z) - Precision-Recall Divergence Optimization for Generative Modeling with
GANs and Normalizing Flows [54.050498411883495]
本研究では,ジェネレーティブ・アドバイサル・ネットワークや正規化フローなどの生成モデルのための新しいトレーニング手法を開発した。
指定された精度-リコールトレードオフを達成することは、textitPR-divergencesと呼ぶ家族からのユニークな$f$-divergenceを最小化することを意味する。
当社のアプローチは,ImageNetなどのデータセットでテストした場合の精度とリコールの両面で,BigGANのような既存の最先端モデルの性能を向上させる。
論文 参考訳(メタデータ) (2023-05-30T10:07:17Z) - Deep Variational Models for Collaborative Filtering-based Recommender
Systems [63.995130144110156]
ディープラーニングは、リコメンダシステムの結果を改善するために、正確な協調フィルタリングモデルを提供する。
提案するモデルは, 深層建築の潜伏空間において, 変分概念を注入性に適用する。
提案手法は, 入射雑音効果を超える変動エンリッチメントのシナリオにおいて, 提案手法の優位性を示す。
論文 参考訳(メタデータ) (2021-07-27T08:59:39Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。