Aggregate-and-Adapt Natural Language Prompts for Downstream Generalization of CLIP
- URL: http://arxiv.org/abs/2410.23698v1
- Date: Thu, 31 Oct 2024 07:41:13 GMT
- Title: Aggregate-and-Adapt Natural Language Prompts for Downstream Generalization of CLIP
- Authors: Chen Huang, Skyler Seto, Samira Abnar, David Grangier, Navdeep Jaitly, Josh Susskind,
- Abstract summary: We dub prompt embedding as Aggregate-and-Adapted Prompt Embedding (AAPE)
AAPE is shown to be able to generalize to different downstream data distributions and tasks, including vision-language understanding tasks.
We also show AAPE is particularly helpful to handle non-canonical and OOD examples.
- Score: 24.22470408549266
- License:
- Abstract: Large pretrained vision-language models like CLIP have shown promising generalization capability, but may struggle in specialized domains (e.g., satellite imagery) or fine-grained classification (e.g., car models) where the visual concepts are unseen or under-represented during pretraining. Prompt learning offers a parameter-efficient finetuning framework that can adapt CLIP to downstream tasks even when limited annotation data are available. In this paper, we improve prompt learning by distilling the textual knowledge from natural language prompts (either human- or LLM-generated) to provide rich priors for those under-represented concepts. We first obtain a prompt ``summary'' aligned to each input image via a learned prompt aggregator. Then we jointly train a prompt generator, optimized to produce a prompt embedding that stays close to the aggregated summary while minimizing task loss at the same time. We dub such prompt embedding as Aggregate-and-Adapted Prompt Embedding (AAPE). AAPE is shown to be able to generalize to different downstream data distributions and tasks, including vision-language understanding tasks (e.g., few-shot classification, VQA) and generation tasks (image captioning) where AAPE achieves competitive performance. We also show AAPE is particularly helpful to handle non-canonical and OOD examples. Furthermore, AAPE learning eliminates LLM-based inference cost as required by baselines, and scales better with data and LLM model size.
Related papers
- SocialGPT: Prompting LLMs for Social Relation Reasoning via Greedy Segment Optimization [70.11167263638562]
Social relation reasoning aims to identify relation categories such as friends, spouses, and colleagues from images.
We first present a simple yet well-crafted framework named name, which combines the perception capability of Vision Foundation Models (VFMs) and the reasoning capability of Large Language Models (LLMs) within a modular framework.
arXiv Detail & Related papers (2024-10-28T18:10:26Z) - Revisiting Prompt Pretraining of Vision-Language Models [13.888505919946578]
We propose a general framework termed Revisiting Prompt Pretraining (RPP)
RPP targets at improving the fitting and generalization ability from two aspects: prompt structure and prompt supervision.
We additionally utilize soft labels derived from zero-shot probability predictions provided by a pretrained Contrastive Language Image Pretraining (CLIP) teacher model.
arXiv Detail & Related papers (2024-09-10T02:36:13Z) - Learning to Prompt with Text Only Supervision for Vision-Language Models [107.282881515667]
One branch of methods adapts CLIP by learning prompts using visual information.
An alternative approach resorts to training-free methods by generating class descriptions from large language models.
We propose to combine the strengths of both streams by learning prompts using only text data.
arXiv Detail & Related papers (2024-01-04T18:59:49Z) - Generative Context-aware Fine-tuning of Self-supervised Speech Models [54.389711404209415]
We study the use of generative large language models (LLM) generated context information.
We propose an approach to distill the generated information during fine-tuning of self-supervised speech models.
We evaluate the proposed approach using the SLUE and Libri-light benchmarks for several downstream tasks: automatic speech recognition, named entity recognition, and sentiment analysis.
arXiv Detail & Related papers (2023-12-15T15:46:02Z) - Open-Vocabulary Camouflaged Object Segmentation [66.94945066779988]
We introduce a new task, open-vocabulary camouflaged object segmentation (OVCOS)
We construct a large-scale complex scene dataset (textbfOVCamo) containing 11,483 hand-selected images with fine annotations and corresponding object classes.
By integrating the guidance of class semantic knowledge and the supplement of visual structure cues from the edge and depth information, the proposed method can efficiently capture camouflaged objects.
arXiv Detail & Related papers (2023-11-19T06:00:39Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
Large Language Models (LLMs) are equipped to deal with larger context lengths.
LLMs can consistently outperform the SotA when the target text is large.
Few-shot learning yields better performance than zero-shot learning.
arXiv Detail & Related papers (2023-10-12T17:17:27Z) - Context-Aware Prompt Tuning for Vision-Language Model with
Dual-Alignment [15.180715595425864]
We introduce a novel method to improve the prompt learning of vision-language models by incorporating pre-trained large language models (LLMs)
With DuAl-PT, we propose to learn more context-aware prompts, benefiting from both explicit and implicit context modeling.
Empirically, DuAl-PT achieves superior performance on 11 downstream datasets on few-shot recognition and base-to-new generalization.
arXiv Detail & Related papers (2023-09-08T06:51:15Z) - EXnet: Efficient In-context Learning for Data-less Text classification [0.0]
We present EXnet, a model specifically designed to perform in-context learning without limitations on the number of examples.
We argue that in-context learning is an effective method to increase task accuracy, and providing examples facilitates cross-task generalization.
With extensive experiments, we show that even our smallest model (15M parameters) generalizes to several unseen classification tasks and domains.
arXiv Detail & Related papers (2023-05-24T01:40:57Z) - Guiding Large Language Models via Directional Stimulus Prompting [114.84930073977672]
We introduce Directional Stimulus Prompting, a novel framework for guiding black-box large language models (LLMs) toward specific desired outputs.
Instead of directly adjusting LLMs, our method employs a small tunable policy model to generate an auxiliary directional stimulus prompt for each input instance.
arXiv Detail & Related papers (2023-02-22T17:44:15Z) - LASP: Text-to-Text Optimization for Language-Aware Soft Prompting of
Vision & Language Models [67.19124099815645]
We propose a novel Language-Aware Soft Prompting (LASP) learning method to alleviate base class overfitting.
LASP is inherently amenable to including, during training, virtual classes, i.e. class names for which no visual samples are available.
LASP matches and surpasses, for the first time, the accuracy on novel classes obtained by hand-crafted prompts and CLIP for 8 out of 11 test datasets.
arXiv Detail & Related papers (2022-10-03T17:56:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.