Modality and Task Adaptation for Enhanced Zero-shot Composed Image Retrieval
- URL: http://arxiv.org/abs/2410.23736v2
- Date: Wed, 06 Aug 2025 07:58:08 GMT
- Title: Modality and Task Adaptation for Enhanced Zero-shot Composed Image Retrieval
- Authors: Haiwen Li, Fei Su, Zhicheng Zhao,
- Abstract summary: Zero-Shot Composed Image Retrieval (ZS-CIR) is designed to retrieve target images using bi-modal (image+text) queries.<n>We propose a lightweight post-hoc framework, consisting of two components.<n>Experiments show that, with the incorporation of our proposed components, inversion-based methods achieve significant improvements.
- Score: 20.612534837883892
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a challenging vision-language task, Zero-Shot Composed Image Retrieval (ZS-CIR) is designed to retrieve target images using bi-modal (image+text) queries. Typical ZS-CIR methods employ an inversion network to generate pseudo-word tokens that effectively represent the input semantics. However, the inversion-based methods suffer from two inherent issues: First, the task discrepancy exists because inversion training and CIR inference involve different objectives. Second, the modality discrepancy arises from the input feature distribution mismatch between training and inference. To this end, we propose a lightweight post-hoc framework, consisting of two components: (1) A new text-anchored triplet construction pipeline leverages a large language model (LLM) to transform a standard image-text dataset into a triplet dataset, where a textual description serves as the target of each triplet. (2) The MoTa-Adapter, a novel parameter-efficient fine-tuning method, adapts the dual encoder to the CIR task using our constructed triplet data. Specifically, on the text side, multiple sets of learnable task prompts are integrated via a Mixture-of-Experts (MoE) layer to capture task-specific priors and handle different types of modifications. On the image side, MoTa-Adapter modulates the inversion network's input to better match the downstream text encoder. In addition, an entropy-based optimization strategy is proposed to assign greater weight to challenging samples, thus ensuring efficient adaptation. Experiments show that, with the incorporation of our proposed components, inversion-based methods achieve significant improvements, reaching state-of-the-art performance across four widely-used benchmarks. All data and code will be made publicly available.
Related papers
- MLLM-Guided VLM Fine-Tuning with Joint Inference for Zero-Shot Composed Image Retrieval [50.062817677022586]
Zero-Shot Image Retrieval (ZS-CIR) methods typically train adapters that convert reference images into pseudo-text tokens.<n>We propose MLLM-Guided VLM Fine-Tuning with Joint Inference (MVFT-JI) to construct two complementary training tasks using only unlabeled images.
arXiv Detail & Related papers (2025-05-26T08:56:59Z) - From Mapping to Composing: A Two-Stage Framework for Zero-shot Composed Image Retrieval [30.33315985826623]
Composed Image Retrieval (CIR) is a challenging multimodal task that retrieves a target image based on a reference image and accompanying modification text.
We propose a two-stage framework where the training is accomplished from mapping to composing.
In the first stage, we enhance image-to-pseudo-word token learning by introducing a visual semantic injection module.
In the second stage, we optimize the text encoder using a small amount of synthetic triplet data, enabling it to effectively extract compositional semantics.
arXiv Detail & Related papers (2025-04-25T00:18:23Z) - CoLLM: A Large Language Model for Composed Image Retrieval [76.29725148964368]
Composed Image Retrieval (CIR) is a complex task that aims to retrieve images based on a multimodal query.
We present CoLLM, a one-stop framework that generates triplets on-the-fly from image-caption pairs.
We leverage Large Language Models (LLMs) to generate joint embeddings of reference images and modification texts.
arXiv Detail & Related papers (2025-03-25T17:59:50Z) - Fine-grained Textual Inversion Network for Zero-Shot Composed Image Retrieval [60.20835288280572]
We propose a novel Fine-grained Textual Inversion Network for ZS-CIR, named FTI4CIR.<n> FTI4CIR comprises two main components: fine-grained pseudo-word token mapping and tri-wise caption-based semantic regularization.
arXiv Detail & Related papers (2025-03-25T02:51:25Z) - Data-Efficient Generalization for Zero-shot Composed Image Retrieval [67.46975191141928]
ZS-CIR aims to retrieve the target image based on a reference image and a text description without requiring in-distribution triplets for training.
One prevalent approach follows the vision-language pretraining paradigm that employs a mapping network to transfer the image embedding to a pseudo-word token in the text embedding space.
We propose a Data-efficient Generalization (DeG) framework, including two novel designs, namely, Textual Supplement (TS) module and Semantic-Set (S-Set)
arXiv Detail & Related papers (2025-03-07T07:49:31Z) - PDV: Prompt Directional Vectors for Zero-shot Composed Image Retrieval [37.95145173167645]
We introduce Prompt Directional Vector (PDV), a simple yet effective training-free enhancement that captures semantic modifications induced by user prompts.<n>PDV enables three key improvements: (1) dynamic composed text embeddings where prompt adjustments are controllable via a scaling factor, (2) composed image embeddings through semantic transfer from text prompts to image features, and (3) weighted fusion of composed text and image embeddings.
arXiv Detail & Related papers (2025-02-11T03:20:21Z) - Reason-before-Retrieve: One-Stage Reflective Chain-of-Thoughts for Training-Free Zero-Shot Composed Image Retrieval [28.018754406453937]
Composed Image Retrieval (CIR) aims to retrieve target images that closely resemble a reference image.
We present One-Stage Reflective Chain-of-Thought Reasoning for ZS-CIR (OSrCIR)
OSrCIR achieves performance gains of 1.80% to 6.44% over existing training-free methods across multiple tasks.
arXiv Detail & Related papers (2024-12-15T06:22:20Z) - Compositional Image Retrieval via Instruction-Aware Contrastive Learning [40.54022628032561]
Composed Image Retrieval (CIR) involves retrieving a target image based on a composed query of an image paired with text that specifies modifications or changes to the visual reference.<n>In practice, due to the scarcity of annotated data in downstream tasks, Zero-Shot CIR (ZS-CIR) is desirable.<n>We propose a novel embedding method utilizing an instruction-tuned Multimodal LLM (MLLM) to generate composed representation.
arXiv Detail & Related papers (2024-12-07T22:46:52Z) - Training-free Zero-shot Composed Image Retrieval via Weighted Modality Fusion and Similarity [2.724141845301679]
Composed image retrieval (CIR) formulates the query as a combination of a reference image and modified text.
We introduce a training-free approach for ZS-CIR.
Our approach is simple, easy to implement, and its effectiveness is validated through experiments on the FashionIQ and CIRR datasets.
arXiv Detail & Related papers (2024-09-07T21:52:58Z) - VEGA: Learning Interleaved Image-Text Comprehension in Vision-Language Large Models [76.94378391979228]
We introduce a new, more demanding task known as Interleaved Image-Text (IITC)
This task challenges models to discern and disregard superfluous elements in both images and text to accurately answer questions.
In support of this task, we further craft a new VEGA dataset, tailored for the IITC task on scientific content, and devised a subtask, Image-Text Association (ITA)
arXiv Detail & Related papers (2024-06-14T17:59:40Z) - An Efficient Post-hoc Framework for Reducing Task Discrepancy of Text Encoders for Composed Image Retrieval [34.065449743428005]
Composed Image Retrieval (CIR) aims to retrieve a target image based on a reference image and conditioning text, enabling controllable image searches.
Traditional Zero-Shot (ZS) CIR methods bypass the need for expensive training CIR triplets by projecting image embeddings into the text token embedding space.
We introduce Reducing Taskrepancy of Texts (RTD), an efficient text-only framework that complements projection-based CIR methods.
arXiv Detail & Related papers (2024-06-13T14:49:28Z) - Image2Sentence based Asymmetrical Zero-shot Composed Image Retrieval [92.13664084464514]
The task of composed image retrieval (CIR) aims to retrieve images based on the query image and the text describing the users' intent.
Existing methods have made great progress with the advanced large vision-language (VL) model in CIR task, however, they generally suffer from two main issues: lack of labeled triplets for model training and difficulty of deployment on resource-restricted environments.
We propose Image2Sentence based Asymmetric zero-shot composed image retrieval (ISA), which takes advantage of the VL model and only relies on unlabeled images for composition learning.
arXiv Detail & Related papers (2024-03-03T07:58:03Z) - Training-free Zero-shot Composed Image Retrieval with Local Concept Reranking [34.31345844296072]
Composed image retrieval attempts to retrieve an image of interest from gallery images through a composed query of a reference image and its corresponding modified text.
Most current composed image retrieval methods follow a supervised learning approach to training on a costly triplet dataset composed of a reference image, modified text, and a corresponding target image.
We present a new training-free zero-shot composed image retrieval method which translates the query into explicit human-understandable text.
arXiv Detail & Related papers (2023-12-14T13:31:01Z) - Contrastive Transformer Learning with Proximity Data Generation for
Text-Based Person Search [60.626459715780605]
Given a descriptive text query, text-based person search aims to retrieve the best-matched target person from an image gallery.
Such a cross-modal retrieval task is quite challenging due to significant modality gap, fine-grained differences and insufficiency of annotated data.
In this paper, we propose a simple yet effective dual Transformer model for text-based person search.
arXiv Detail & Related papers (2023-11-15T16:26:49Z) - Vision-by-Language for Training-Free Compositional Image Retrieval [78.60509831598745]
Compositional Image Retrieval (CIR) aims to retrieve the relevant target image in a database.
Recent research sidesteps this need by using large-scale vision-language models (VLMs)
We propose to tackle CIR in a training-free manner via Vision-by-Language (CIReVL)
arXiv Detail & Related papers (2023-10-13T17:59:38Z) - Cross-Modal Retrieval Meets Inference:Improving Zero-Shot Classification
with Cross-Modal Retrieval [29.838375158101027]
Contrastive language-image pre-training (CLIP) has demonstrated remarkable zero-shot classification ability.
We propose X-MoRe, a novel inference method comprising two key steps: (1) cross-modal retrieval and (2) modal-confidence-based ensemble.
X-MoRe demonstrates robust performance across a diverse set of tasks without the need for additional training.
arXiv Detail & Related papers (2023-08-29T13:02:35Z) - Noisy-Correspondence Learning for Text-to-Image Person Re-identification [50.07634676709067]
We propose a novel Robust Dual Embedding method (RDE) to learn robust visual-semantic associations even with noisy correspondences.
Our method achieves state-of-the-art results both with and without synthetic noisy correspondences on three datasets.
arXiv Detail & Related papers (2023-08-19T05:34:13Z) - COTS: Collaborative Two-Stream Vision-Language Pre-Training Model for
Cross-Modal Retrieval [59.15034487974549]
We propose a novel COllaborative Two-Stream vision-language pretraining model termed COTS for image-text retrieval.
Our COTS achieves the highest performance among all two-stream methods and comparable performance with 10,800X faster in inference.
Importantly, our COTS is also applicable to text-to-video retrieval, yielding new state-ofthe-art on the widely-used MSR-VTT dataset.
arXiv Detail & Related papers (2022-04-15T12:34:47Z) - BatchFormerV2: Exploring Sample Relationships for Dense Representation
Learning [88.82371069668147]
BatchFormerV2 is a more general batch Transformer module, which enables exploring sample relationships for dense representation learning.
BatchFormerV2 consistently improves current DETR-based detection methods by over 1.3%.
arXiv Detail & Related papers (2022-04-04T05:53:42Z) - SSCR: Iterative Language-Based Image Editing via Self-Supervised
Counterfactual Reasoning [79.30956389694184]
Iterative Language-Based Image Editing (IL-BIE) tasks follow iterative instructions to edit images step by step.
Data scarcity is a significant issue for ILBIE as it is challenging to collect large-scale examples of images before and after instruction-based changes.
We introduce a Self-Supervised Counterfactual Reasoning framework that incorporates counterfactual thinking to overcome data scarcity.
arXiv Detail & Related papers (2020-09-21T01:45:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.