論文の概要: MLLA-UNet: Mamba-like Linear Attention in an Efficient U-Shape Model for Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2410.23738v1
- Date: Thu, 31 Oct 2024 08:54:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 17:00:41.026949
- Title: MLLA-UNet: Mamba-like Linear Attention in an Efficient U-Shape Model for Medical Image Segmentation
- Title(参考訳): MLLA-UNet:医療画像分割のための効率的なU字モデルにおけるマンバ様線形注意
- Authors: Yufeng Jiang, Zongxi Li, Xiangyan Chen, Haoran Xie, Jing Cai,
- Abstract要約: 従来のセグメンテーション手法は、高い解剖学的変動、ぼやけた組織の境界、低い臓器コントラスト、ノイズといった課題に対処するのに苦労する。
MLLA-UNet(Mamba-like Linear Attention UNet)を提案する。
MLLA-UNetは、FLARE22、AMOS CT、ACDCに限らず、24の異なるセグメンテーションタスクを持つ6つの挑戦的なデータセットに対して、平均88.32%の最先端のパフォーマンスを達成することを示した。
- 参考スコア(独自算出の注目度): 6.578088710294546
- License:
- Abstract: Recent advancements in medical imaging have resulted in more complex and diverse images, with challenges such as high anatomical variability, blurred tissue boundaries, low organ contrast, and noise. Traditional segmentation methods struggle to address these challenges, making deep learning approaches, particularly U-shaped architectures, increasingly prominent. However, the quadratic complexity of standard self-attention makes Transformers computationally prohibitive for high-resolution images. To address these challenges, we propose MLLA-UNet (Mamba-Like Linear Attention UNet), a novel architecture that achieves linear computational complexity while maintaining high segmentation accuracy through its innovative combination of linear attention and Mamba-inspired adaptive mechanisms, complemented by an efficient symmetric sampling structure for enhanced feature processing. Our architecture effectively preserves essential spatial features while capturing long-range dependencies at reduced computational complexity. Additionally, we introduce a novel sampling strategy for multi-scale feature fusion. Experiments demonstrate that MLLA-UNet achieves state-of-the-art performance on six challenging datasets with 24 different segmentation tasks, including but not limited to FLARE22, AMOS CT, and ACDC, with an average DSC of 88.32%. These results underscore the superiority of MLLA-UNet over existing methods. Our contributions include the novel 2D segmentation architecture and its empirical validation. The code is available via https://github.com/csyfjiang/MLLA-UNet.
- Abstract(参考訳): 近年の医用画像の進歩により、解剖学的変動、組織の境界のぼやけ、臓器のコントラストの低さ、ノイズなどの課題により、より複雑で多様な画像が得られている。
従来のセグメンテーション手法はこれらの課題に対処するのに苦労し、深層学習アプローチ、特にU字型アーキテクチャはますます顕著になっている。
しかし、標準的な自己注意の二次的な複雑さにより、トランスフォーマーは高解像度の画像に対して計算的に禁止される。
これらの課題に対処するため,MLLA-UNet(Mamba-like Linear Attention UNet)を提案する。このアーキテクチャは,線形アテンションとMamba-inspireed Adaptive Mechanismの革新的な組み合わせにより,線形計算の精度を維持しながら線形計算の複雑さを実現する。
我々のアーキテクチャは、計算の複雑さを減らし、長距離依存を捕捉しながら、重要な空間的特徴を効果的に保存する。
さらに,マルチスケール機能融合のための新しいサンプリング戦略を導入する。
MLLA-UNetは、FLARE22、AMOS CT、ACDCに限らず、24の異なるセグメンテーションタスクを持つ6つの挑戦的なデータセットに対して、平均88.32%の最先端のパフォーマンスを達成することを示した。
これらの結果は,既存の手法よりもMLLA-UNetの方が優れていることを示す。
私たちの貢献には、新しい2Dセグメンテーションアーキテクチャとその実証検証が含まれる。
コードはhttps://github.com/csyfjiang/MLLA-UNetから入手できる。
関連論文リスト
- LAMA: Stable Dual-Domain Deep Reconstruction For Sparse-View CT [4.573246328161056]
我々は,2ブロック最適化による問題を解決するための学習交替最小化アルゴリズム (LAMA) を開発した。
LAMAはデータ領域と画像領域の両方で学習可能な正規化子を持つ変分モデルとして自然に誘導される。
LAMAは、ネットワークの複雑さ、メモリ効率、再構成精度、安定性、解釈可能性を低減する。
論文 参考訳(メタデータ) (2024-10-28T15:13:04Z) - HRVMamba: High-Resolution Visual State Space Model for Dense Prediction [60.80423207808076]
効率的なハードウェアを意識した設計のステートスペースモデル(SSM)は、コンピュータビジョンタスクにおいて大きな可能性を証明している。
これらのモデルは、誘導バイアスの不足、長距離の忘れ、低解像度の出力表現の3つの主要な課題によって制約されている。
本稿では, 変形可能な畳み込みを利用して, 長距離忘れ問題を緩和する動的ビジュアル状態空間(DVSS)ブロックを提案する。
また,DVSSブロックに基づく高分解能視覚空間モデル(HRVMamba)を導入し,プロセス全体を通して高分解能表現を保存する。
論文 参考訳(メタデータ) (2024-10-04T06:19:29Z) - MambaClinix: Hierarchical Gated Convolution and Mamba-Based U-Net for Enhanced 3D Medical Image Segmentation [6.673169053236727]
医用画像分割のための新しいU字型アーキテクチャであるMambaClinixを提案する。
MambaClinixは、階層的なゲート畳み込みネットワークとMambaを適応的なステージワイドフレームワークに統合する。
以上の結果から,MambaClinixは低モデルの複雑さを維持しつつ高いセグメンテーション精度を達成できることが示唆された。
論文 参考訳(メタデータ) (2024-09-19T07:51:14Z) - PPMamba: A Pyramid Pooling Local Auxiliary SSM-Based Model for Remote Sensing Image Semantic Segmentation [1.5136939451642137]
本稿では,CNN と Mamba を統合し,セマンティックセグメンテーションタスクを実現する新しいネットワークである Pyramid Pooling Mamba (PPMamba) を提案する。
PPMambaは最先端のモデルに比べて競争力がある。
論文 参考訳(メタデータ) (2024-09-10T08:08:50Z) - Bidirectional Gated Mamba for Sequential Recommendation [56.85338055215429]
最近の進歩であるMambaは、時系列予測において例外的なパフォーマンスを示した。
SIGMA(Selective Gated Mamba)と呼ばれる,シークエンシャルレコメンデーションのための新しいフレームワークを紹介する。
以上の結果から,SIGMAは5つの実世界のデータセットにおいて,現在のモデルよりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-08-21T09:12:59Z) - Self-Prior Guided Mamba-UNet Networks for Medical Image Super-Resolution [7.97504951029884]
医用画像超解像のための自己優先型マンバ-UNetネットワーク(SMamba-UNet)を提案する。
提案手法は,Mamba-UNetネットワーク下での自己優先型マルチスケールコンテキスト特徴を学習することを目的としている。
論文 参考訳(メタデータ) (2024-07-08T14:41:53Z) - Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification [4.389334324926174]
本研究では、このタスクにステートスペースモデル(SSM)をデプロイする最初の試みである、HSI分類のための革新的なMamba-in-Mamba(MiM)アーキテクチャを紹介する。
MiMモデルには,1)イメージをシーケンスデータに変換する新しい集中型Mamba-Cross-Scan(MCS)機構,2)Tokenized Mamba(T-Mamba)エンコーダ,3)Weighted MCS Fusion(WMF)モジュールが含まれる。
3つの公開HSIデータセットによる実験結果から,本手法は既存のベースラインや最先端アプローチよりも優れていることが示された。
論文 参考訳(メタデータ) (2024-05-20T13:19:02Z) - Real-Time Image Segmentation via Hybrid Convolutional-Transformer Architecture Search [49.81353382211113]
マルチヘッド自己認識を高分解能表現CNNに効率的に組み込むという課題に対処する。
本稿では,高解像度機能の利点をフル活用したマルチターゲットマルチブランチ・スーパーネット手法を提案する。
本稿では,Hybrid Convolutional-Transformer Architecture Search (HyCTAS)法を用いて,軽量畳み込み層とメモリ効率のよい自己保持層を最適に組み合わせたモデルを提案する。
論文 参考訳(メタデータ) (2024-03-15T15:47:54Z) - MamMIL: Multiple Instance Learning for Whole Slide Images with State Space Models [56.37780601189795]
本稿では,WSI分析のためのフレームワークMamMILを提案する。
私たちは各WSIを非指向グラフとして表現します。
マンバが1次元シーケンスしか処理できない問題に対処するために、トポロジ対応の走査機構を提案する。
論文 参考訳(メタデータ) (2024-03-08T09:02:13Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS)は、コンピュータビジョンと自然言語処理を組み合わせた新しい課題である。
従来の参照画像(RIS)アプローチは、空中画像に見られる複雑な空間スケールと向きによって妨げられている。
本稿ではRMSIN(Rotated Multi-Scale Interaction Network)を紹介する。
論文 参考訳(メタデータ) (2023-12-19T08:14:14Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
本稿では,DWT(Distance-based Weighted Transformer)を利用した画像コンポーネント間の関係をよりよく理解するためのアーキテクチャを提案する。
CNNは、粗い事前の局所的なテクスチャ情報を強化するために使用される。
DWTブロックは、特定の粗いテクスチャやコヒーレントな視覚構造を復元するために使用される。
論文 参考訳(メタデータ) (2023-10-11T12:46:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。