Identify Then Recommend: Towards Unsupervised Group Recommendation
- URL: http://arxiv.org/abs/2410.23757v1
- Date: Thu, 31 Oct 2024 09:24:22 GMT
- Title: Identify Then Recommend: Towards Unsupervised Group Recommendation
- Authors: Yue Liu, Shihao Zhu, Tianyuan Yang, Jian Ma, Wenliang Zhong,
- Abstract summary: Group Recommendation (GR) aims to recommend items to groups of users.
We present a novel unsupervised group recommendation framework named underlineIdentify underlineThen underlineRecommend (underlineITR)
We deploy ITR on the industrial recommender and achieve promising results.
- Score: 13.238029824207151
- License:
- Abstract: Group Recommendation (GR), which aims to recommend items to groups of users, has become a promising and practical direction for recommendation systems. This paper points out two issues of the state-of-the-art GR models. (1) The pre-defined and fixed number of user groups is inadequate for real-time industrial recommendation systems, where the group distribution can shift dynamically. (2) The training schema of existing GR methods is supervised, necessitating expensive user-group and group-item labels, leading to significant annotation costs. To this end, we present a novel unsupervised group recommendation framework named \underline{I}dentify \underline{T}hen \underline{R}ecommend (\underline{ITR}), where it first identifies the user groups in an unsupervised manner even without the pre-defined number of groups, and then two pre-text tasks are designed to conduct self-supervised group recommendation. Concretely, at the group identification stage, we first estimate the adaptive density of each user point, where areas with higher densities are more likely to be recognized as group centers. Then, a heuristic merge-and-split strategy is designed to discover the user groups and decision boundaries. Subsequently, at the self-supervised learning stage, the pull-and-repulsion pre-text task is proposed to optimize the user-group distribution. Besides, the pseudo group recommendation pre-text task is designed to assist the recommendations. Extensive experiments demonstrate the superiority and effectiveness of ITR on both user recommendation (e.g., 22.22\% NDCG@5 $\uparrow$) and group recommendation (e.g., 22.95\% NDCG@5 $\uparrow$). Furthermore, we deploy ITR on the industrial recommender and achieve promising results.
Related papers
- AlignGroup: Learning and Aligning Group Consensus with Member Preferences for Group Recommendation [7.8148534870343225]
Group activities are important behaviors in human society, providing personalized recommendations for groups is referred to as the group recommendation task.
We propose a novel group recommendation method AlignGroup, which focuses on both group consensus and individual preferences of group members to infer the group decision-making.
arXiv Detail & Related papers (2024-09-04T10:03:09Z) - Focus on the Common Good: Group Distributional Robustness Follows [47.62596240492509]
This paper proposes a new and simple algorithm that explicitly encourages learning of features that are shared across various groups.
While Group-DRO focuses on groups with worst regularized loss, focusing instead, on groups that enable better performance even on other groups, could lead to learning of shared/common features.
arXiv Detail & Related papers (2021-10-06T09:47:41Z) - Double-Scale Self-Supervised Hypergraph Learning for Group
Recommendation [35.841350982832545]
Group recommendation suffers seriously from the problem of data sparsity.
We propose a self-supervised hypergraph learning framework for group recommendation to achieve two goals.
arXiv Detail & Related papers (2021-09-09T12:19:49Z) - Just Train Twice: Improving Group Robustness without Training Group
Information [101.84574184298006]
Standard training via empirical risk minimization can produce models that achieve high accuracy on average but low accuracy on certain groups.
Prior approaches that achieve high worst-group accuracy, like group distributionally robust optimization (group DRO) require expensive group annotations for each training point.
We propose a simple two-stage approach, JTT, that first trains a standard ERM model for several epochs, and then trains a second model that upweights the training examples that the first model misclassified.
arXiv Detail & Related papers (2021-07-19T17:52:32Z) - Learning Multi-Attention Context Graph for Group-Based Re-Identification [214.84551361855443]
Learning to re-identify or retrieve a group of people across non-overlapped camera systems has important applications in video surveillance.
In this work, we consider employing context information for identifying groups of people, i.e., group re-id.
We propose a novel unified framework based on graph neural networks to simultaneously address the group-based re-id tasks.
arXiv Detail & Related papers (2021-04-29T09:57:47Z) - DeepGroup: Representation Learning for Group Recommendation with
Implicit Feedback [0.5584060970507505]
We focus on making recommendations for a new group of users whose preferences are unknown, but we are given the decisions/choices of other groups.
Given a set of groups and their observed decisions, group decision prediction intends to predict the decision of a new group of users.
reverse social choice aims to infer the preferences of those users involved in observed group decisions.
arXiv Detail & Related papers (2021-03-13T02:05:26Z) - Overcoming Data Sparsity in Group Recommendation [52.00998276970403]
Group recommender systems should be able to accurately learn not only users' personal preferences but also preference aggregation strategy.
In this paper, we take Bipartite Graphding Model (BGEM), the self-attention mechanism and Graph Convolutional Networks (GCNs) as basic building blocks to learn group and user representations in a unified way.
arXiv Detail & Related papers (2020-10-02T07:11:19Z) - Summary-Source Proposition-level Alignment: Task, Datasets and
Supervised Baseline [94.0601799665342]
Aligning sentences in a reference summary with their counterparts in source documents was shown as a useful auxiliary summarization task.
We propose establishing summary-source alignment as an explicit task, while introducing two major novelties.
We create a novel training dataset for proposition-level alignment, derived automatically from available summarization evaluation data.
We present a supervised proposition alignment baseline model, showing improved alignment-quality over the unsupervised approach.
arXiv Detail & Related papers (2020-09-01T17:27:12Z) - Self-Supervised Reinforcement Learning for Recommender Systems [77.38665506495553]
We propose self-supervised reinforcement learning for sequential recommendation tasks.
Our approach augments standard recommendation models with two output layers: one for self-supervised learning and the other for RL.
Based on such an approach, we propose two frameworks namely Self-Supervised Q-learning(SQN) and Self-Supervised Actor-Critic(SAC)
arXiv Detail & Related papers (2020-06-10T11:18:57Z) - GroupIM: A Mutual Information Maximization Framework for Neural Group
Recommendation [24.677145454396822]
We study the problem of making item recommendations to ephemeral groups, which comprise users with limited or no historical activities together.
Existing studies target persistent groups with substantial activity history, while ephemeral groups lack historical interactions.
We propose data-driven regularization strategies to exploit both the preference covariance amongst users who are in the same group, as well as the contextual relevance of users' individual preferences to each group.
arXiv Detail & Related papers (2020-06-05T23:18:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.