Leveraging the Dynamics of Leadership in Group Recommendation Systems
- URL: http://arxiv.org/abs/2503.12877v1
- Date: Mon, 17 Mar 2025 07:16:22 GMT
- Title: Leveraging the Dynamics of Leadership in Group Recommendation Systems
- Authors: Peijin Yu, Shin'ichi Konomi,
- Abstract summary: We introduce a novel approach to group recommendation, with a specific focus on small groups sharing common interests.<n>We propose a recommendation algorithm that emphasizes the dynamics of relationships and trust within the group.<n>This interaction-focused framework ultimately seeks to enhance overall group satisfaction with the recommended choices.
- Score: 0.11510009152620665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of group recommendation systems (GRS), effectively addressing the diverse preferences of group members poses a significant challenge. Traditional GRS approaches often aggregate individual preferences into a collective group preference to generate recommendations, which may overlook the intricate interactions between group members. We introduce a novel approach to group recommendation, with a specific focus on small groups sharing common interests. In particular, we present a web-based restaurant recommendation system that enhances user satisfaction by modeling mutual interactions among group members. Drawing inspiration from group decision-making literature and leveraging graph theory, we propose a recommendation algorithm that emphasizes the dynamics of relationships and trust within the group. By representing group members as nodes and their interactions as directed edges, the algorithm captures pairwise relationships to foster consensus and improve the alignment of recommendations with group preferences. This interaction-focused framework ultimately seeks to enhance overall group satisfaction with the recommended choices.
Related papers
- Consensus-aware Contrastive Learning for Group Recommendation [12.743275229282922]
Group recommendation aims to provide personalized item suggestions to a group of users by reflecting their collective preferences.
We introduce a Consensus-aware Contrastive Learning for Group Recommendation (CoCoRec) that models group consensus through contrastive learning.
Experiments conducted on four benchmark datasets show that CoCoRec consistently outperforms state-of-the-art baselines in both individual and group recommendation scenarios.
arXiv Detail & Related papers (2025-04-18T14:03:40Z) - Leveraging Member-Group Relations via Multi-View Graph Filtering for Effective Group Recommendation [7.787211625411271]
Group-GF is a new approach for extremely fast recommendations of similarity to each group via multi-view graph (GF)<n>We show that Group-GF significantly reduces runtime and achieves state-of-the-art recommendation accuracy.
arXiv Detail & Related papers (2025-02-13T08:05:14Z) - Online Clustering of Dueling Bandits [59.09590979404303]
We introduce the first "clustering of dueling bandit algorithms" to enable collaborative decision-making based on preference feedback.<n>We propose two novel algorithms: (1) Clustering of Linear Dueling Bandits (COLDB) which models the user reward functions as linear functions of the context vectors, and (2) Clustering of Neural Dueling Bandits (CONDB) which uses a neural network to model complex, non-linear user reward functions.
arXiv Detail & Related papers (2025-02-04T07:55:41Z) - Reason4Rec: Large Language Models for Recommendation with Deliberative User Preference Alignment [69.11529841118671]
We propose a new Deliberative Recommendation task, which incorporates explicit reasoning about user preferences as an additional alignment goal.<n>We then introduce the Reasoning-powered Recommender framework for deliberative user preference alignment.
arXiv Detail & Related papers (2025-02-04T07:17:54Z) - GPRec: Bi-level User Modeling for Deep Recommenders [45.38687843911628]
GPRec explicitly categorizes users into groups in a learnable manner and aligns them with corresponding group embeddings.
On the individual level, GPRec identifies personal preferences from ID-like features and refines the obtained individual representations to be independent of group ones.
Rigorous testing of GPRec on three public datasets has demonstrated significant improvements in recommendation quality.
arXiv Detail & Related papers (2024-10-28T04:49:05Z) - AlignGroup: Learning and Aligning Group Consensus with Member Preferences for Group Recommendation [7.8148534870343225]
Group activities are important behaviors in human society, providing personalized recommendations for groups is referred to as the group recommendation task.
We propose a novel group recommendation method AlignGroup, which focuses on both group consensus and individual preferences of group members to infer the group decision-making.
arXiv Detail & Related papers (2024-09-04T10:03:09Z) - Multi-Granularity Attention Model for Group Recommendation [7.764789596492022]
Group recommendation provides personalized recommendations to a group of users based on their shared interests, preferences, and characteristics.
We present the Multi-Granularity Attention Model (MGAM) to uncover group members' latent preferences and mitigate recommendation noise.
Our method effectively reduces group recommendation noise across multiple granularities and comprehensively learns individual interests.
arXiv Detail & Related papers (2023-08-08T03:24:44Z) - On the Convergence of Clustered Federated Learning [57.934295064030636]
In a federated learning system, the clients, e.g. mobile devices and organization participants, usually have different personal preferences or behavior patterns.
This paper proposes a novel weighted client-based clustered FL algorithm to leverage the client's group and each client in a unified optimization framework.
arXiv Detail & Related papers (2022-02-13T02:39:19Z) - Overcoming Data Sparsity in Group Recommendation [52.00998276970403]
Group recommender systems should be able to accurately learn not only users' personal preferences but also preference aggregation strategy.
In this paper, we take Bipartite Graphding Model (BGEM), the self-attention mechanism and Graph Convolutional Networks (GCNs) as basic building blocks to learn group and user representations in a unified way.
arXiv Detail & Related papers (2020-10-02T07:11:19Z) - GroupIM: A Mutual Information Maximization Framework for Neural Group
Recommendation [24.677145454396822]
We study the problem of making item recommendations to ephemeral groups, which comprise users with limited or no historical activities together.
Existing studies target persistent groups with substantial activity history, while ephemeral groups lack historical interactions.
We propose data-driven regularization strategies to exploit both the preference covariance amongst users who are in the same group, as well as the contextual relevance of users' individual preferences to each group.
arXiv Detail & Related papers (2020-06-05T23:18:19Z) - Incentivizing Exploration with Selective Data Disclosure [70.11902902106014]
We propose and design recommendation systems that incentivize efficient exploration.
Agents arrive sequentially, choose actions and receive rewards, drawn from fixed but unknown action-specific distributions.
We attain optimal regret rate for exploration using a flexible frequentist behavioral model.
arXiv Detail & Related papers (2018-11-14T19:29:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.