論文の概要: Disentangling Interactions and Dependencies in Feature Attribution
- arxiv url: http://arxiv.org/abs/2410.23772v1
- Date: Thu, 31 Oct 2024 09:41:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 17:03:20.455154
- Title: Disentangling Interactions and Dependencies in Feature Attribution
- Title(参考訳): 特徴帰属における異種相互作用と依存
- Authors: Gunnar König, Eric Günther, Ulrike von Luxburg,
- Abstract要約: 機械学習において、グローバルな特徴重要度法は、対象変数の予測に個々の特徴がどの程度貢献するかを判断しようとする。
一般的に用いられる特徴重要度スコアでは、これらの協調効果は特徴の個々の貢献と混同される。
DIPは、3つの成分をアンタングルする個々の特徴重要度スコアを数学的に分解する。
- 参考スコア(独自算出の注目度): 9.442326245744916
- License:
- Abstract: In explainable machine learning, global feature importance methods try to determine how much each individual feature contributes to predicting the target variable, resulting in one importance score for each feature. But often, predicting the target variable requires interactions between several features (such as in the XOR function), and features might have complex statistical dependencies that allow to partially replace one feature with another one. In commonly used feature importance scores these cooperative effects are conflated with the features' individual contributions, making them prone to misinterpretations. In this work, we derive DIP, a new mathematical decomposition of individual feature importance scores that disentangles three components: the standalone contribution and the contributions stemming from interactions and dependencies. We prove that the DIP decomposition is unique and show how it can be estimated in practice. Based on these results, we propose a new visualization of feature importance scores that clearly illustrates the different contributions.
- Abstract(参考訳): 説明可能な機械学習では、グローバルな特徴重要度法は、各特徴が対象変数の予測にどの程度貢献するかを判断し、その結果、各特徴に1つの重要度スコアを与える。
しかし多くの場合、ターゲット変数を予測するには、いくつかの機能(XOR関数など)間の相互作用が必要である。
一般的に用いられる特徴重要度スコアでは、これらの協調効果は特徴の個々の貢献と混同され、誤った解釈をしがちである。
本研究はDIPを導出する。DIPは個々の特徴重要度スコアを数学的に分解し、3つの要素(独立的な貢献と、相互作用と依存から生じる貢献)を解き放つ。
DIP分解は独特であり、実際にどのように推定できるかを示す。
これらの結果に基づいて,異なるコントリビューションを明確に示す機能重要度スコアの可視化を提案する。
関連論文リスト
- A Unified Causal View of Instruction Tuning [76.1000380429553]
メタ構造因果モデル(meta-SCM)を開発し、異なるNLPタスクをデータの単一因果構造の下で統合する。
主なアイデアは、タスク要求因果関係を学習し、タスクの予測にのみそれらを使用することである。
論文 参考訳(メタデータ) (2024-02-09T07:12:56Z) - On the estimation of the number of components in multivariate functional principal component analysis [0.0]
保持する主成分の数の選定を検討するため, 広範囲なシミュレーションを行った。
本研究では,各単変量機能特徴に対する分散説明しきい値のパーセンテージを用いた従来の手法は信頼性が低いことを示す。
論文 参考訳(メタデータ) (2023-11-08T09:05:42Z) - Generalization Performance of Transfer Learning: Overparameterized and
Underparameterized Regimes [61.22448274621503]
現実世界のアプリケーションでは、タスクは部分的な類似性を示し、あるアスペクトは似ているが、他のアスペクトは異なるか無関係である。
本研究は,パラメータ伝達の2つの選択肢を包含して,多種多様な移動学習について検討する。
一般化性能を向上させるために,共通部分とタスク特化部分の特徴数を決定するための実践的ガイドラインを提供する。
論文 参考訳(メタデータ) (2023-06-08T03:08:40Z) - On the Joint Interaction of Models, Data, and Features [82.60073661644435]
本稿では,データとモデル間の相互作用を実験的に解析する新しいツールであるインタラクションテンソルを紹介する。
これらの観測に基づいて,特徴学習のための概念的枠組みを提案する。
この枠組みの下では、一つの仮説に対する期待された精度と一対の仮説に対する合意はどちらも閉形式で導出することができる。
論文 参考訳(メタデータ) (2023-06-07T21:35:26Z) - Relational Local Explanations [11.679389861042]
我々は,入力変数間の関係解析に基づく,新しいモデルに依存しない,置換に基づく特徴帰属アルゴリズムを開発した。
機械学習のモデル決定とデータについて、より広範な洞察を得ることができます。
論文 参考訳(メタデータ) (2022-12-23T14:46:23Z) - Multi-task Bias-Variance Trade-off Through Functional Constraints [102.64082402388192]
マルチタスク学習は、多様なタスクによく機能する関数の集合を取得することを目的としている。
本稿では,2つの極端な学習シナリオ,すなわちすべてのタスクに対する単一関数と,他のタスクを無視するタスク固有関数から直感を抽出する。
本稿では,集中関数に対するドメイン固有解を強制する制約付き学習定式化を導入する。
論文 参考訳(メタデータ) (2022-10-27T16:06:47Z) - Grouped Feature Importance and Combined Features Effect Plot [2.15867006052733]
解釈可能な機械学習は、機械学習アルゴリズムの人気が高まり、研究の活発な領域となっている。
機能グループに対して,既存のモデル非依存手法をどのように定義できるかを包括的に概観し,機能グループの重要性を評価した。
本稿では,特徴のスパースで解釈可能な線形結合に基づいて,特徴群の効果を可視化する手法である複合特徴効果プロットを提案する。
論文 参考訳(メタデータ) (2021-04-23T16:27:38Z) - Interactive Fusion of Multi-level Features for Compositional Activity
Recognition [100.75045558068874]
インタラクティブな融合によってこの目標を達成する新しいフレームワークを提案する。
本フレームワークは,位置から出現までの特徴抽出,意味的特徴の相互作用,意味から位置への予測という3つのステップで実装する。
我々は,2つの行動認識データセット,SomethingとCharadesに対するアプローチを評価した。
論文 参考訳(メタデータ) (2020-12-10T14:17:18Z) - Towards a More Reliable Interpretation of Machine Learning Outputs for
Safety-Critical Systems using Feature Importance Fusion [0.0]
我々は新しい融合距離を導入し、それを最先端技術と比較する。
我々のアプローチは、地上の真実が知られている合成データで検証される。
その結果、我々の機能重要度アンサンブルフレームワークは、既存の方法に比べて、機能重要度エラーが15%少ないことがわかった。
論文 参考訳(メタデータ) (2020-09-11T15:51:52Z) - Nonparametric Feature Impact and Importance [0.6123324869194193]
データ上で直接動作する部分依存曲線から導かれる特徴的影響と重要性の数学的定義を与える。
品質を評価するために、これらの定義によってランク付けされた特徴は、既存の特徴選択技術と競合することを示す。
論文 参考訳(メタデータ) (2020-06-08T17:07:35Z) - Self-Attention Attribution: Interpreting Information Interactions Inside
Transformer [89.21584915290319]
本稿では,トランスフォーマー内の情報相互作用を解釈する自己帰属属性法を提案する。
本研究は,BERT に対する非目標攻撃の実装において,その属性を敵対パターンとして用いることができることを示す。
論文 参考訳(メタデータ) (2020-04-23T14:58:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。