論文の概要: Video Token Merging for Long-form Video Understanding
- arxiv url: http://arxiv.org/abs/2410.23782v1
- Date: Thu, 31 Oct 2024 09:55:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 17:01:49.898026
- Title: Video Token Merging for Long-form Video Understanding
- Title(参考訳): 長めのビデオ理解のためのビデオトケマージ
- Authors: Seon-Ho Lee, Jue Wang, Zhikang Zhang, David Fan, Xinyu Li,
- Abstract要約: 学習可能なビデオトークンのマージアルゴリズムを提案し,その正当性に基づいて動的にトークンをマージする。
提案手法は,メモリコストを84%削減し,スループットをベースラインアルゴリズムに比べて約6.89倍向上させる。
- 参考スコア(独自算出の注目度): 17.59960070514554
- License:
- Abstract: As the scale of data and models for video understanding rapidly expand, handling long-form video input in transformer-based models presents a practical challenge. Rather than resorting to input sampling or token dropping, which may result in information loss, token merging shows promising results when used in collaboration with transformers. However, the application of token merging for long-form video processing is not trivial. We begin with the premise that token merging should not rely solely on the similarity of video tokens; the saliency of tokens should also be considered. To address this, we explore various video token merging strategies for long-form video classification, starting with a simple extension of image token merging, moving to region-concentrated merging, and finally proposing a learnable video token merging (VTM) algorithm that dynamically merges tokens based on their saliency. Extensive experimental results show that we achieve better or comparable performances on the LVU, COIN, and Breakfast datasets. Moreover, our approach significantly reduces memory costs by 84% and boosts throughput by approximately 6.89 times compared to baseline algorithms.
- Abstract(参考訳): ビデオ理解のためのデータとモデルのスケールが急速に拡大するにつれて、トランスフォーマーベースモデルにおける長大なビデオ入力の処理が現実的な課題となっている。
入力のサンプリングやトークンのドロップに代えて、情報損失につながる可能性があるため、トークンマージはトランスフォーマーとのコラボレーションにおいて有望な結果を示す。
しかし,長期ビデオ処理におけるトークンマージの適用は容易ではない。
私たちは、トークンのマージはビデオトークンの類似性のみに依存するべきではないという前提から始めます。
そこで本研究では,画像トークンのマージを簡易に拡張し,領域集中型マージに移行し,学習可能なビデオトークンマージ(VTM)アルゴリズムを提案する。
大規模な実験結果から,LVU,COIN,Breakfastのデータセットにおいて,より優れた,あるいは同等のパフォーマンスが得られることが示された。
さらに,本手法はメモリコストを84%削減し,スループットをベースラインアルゴリズムに比べて約6.89倍向上させる。
関連論文リスト
- ElasticTok: Adaptive Tokenization for Image and Video [109.75935878130582]
我々は、フレームを可変数のトークンに適応的にエンコードする、事前のフレームを条件付けするElasticTokを紹介する。
推論中、ElasticTokは必要に応じてトークンを動的に割り当てる。
画像とビデオに対する評価は,トークンの有効利用におけるアプローチの有効性を示すものである。
論文 参考訳(メタデータ) (2024-10-10T20:54:15Z) - SITAR: Semi-supervised Image Transformer for Action Recognition [20.609596080624662]
本稿では,少数のラベル付きビデオを利用する半教師付き環境での映像行動認識について述べる。
我々は、ラベルなしサンプルの膨大なプールを利用して、エンコードされたスーパーイメージに対して対照的な学習を行う。
本手法は,従来の半教師あり行動認識手法と比較して優れた性能を示す。
論文 参考訳(メタデータ) (2024-09-04T17:49:54Z) - LLaVA-PruMerge: Adaptive Token Reduction for Efficient Large Multimodal Models [35.88374542519597]
大規模マルチモーダルモデル(LMM)は、視覚エンコーダと大きな言語モデルとを接続することで、視覚的推論能力を示す。
近年のLMMには、高解像度の画像やビデオなど、より複雑な視覚入力が組み込まれており、視覚トークンの数が大幅に増加する。
我々は,LMMの性能を損なうことなく,視覚トークンの数を著しく削減する適応型視覚トークン削減戦略であるPruMergeを提案する。
論文 参考訳(メタデータ) (2024-03-22T17:59:52Z) - VidToMe: Video Token Merging for Zero-Shot Video Editing [100.79999871424931]
本稿では,フレーム間で自己注意トークンをマージすることで,生成ビデオの時間的一貫性を高める新しい手法を提案する。
本手法は時間的コヒーレンスを改善し,自己アテンション計算におけるメモリ消費を削減する。
論文 参考訳(メタデータ) (2023-12-17T09:05:56Z) - Token Fusion: Bridging the Gap between Token Pruning and Token Merging [71.84591084401458]
ビジョントランスフォーマー(ViT)はコンピュータビジョンの強力なバックボーンとして登場し、多くの伝統的なCNNを上回っている。
計算オーバーヘッドは、主に自己アテンション機構によるもので、リソース制約のあるエッジデバイスへのデプロイが困難になる。
トークンプルーニングとトークンマージの両方のメリットを両立させる手法であるToken Fusion(ToFu)を紹介する。
論文 参考訳(メタデータ) (2023-12-02T04:29:19Z) - CenterCLIP: Token Clustering for Efficient Text-Video Retrieval [67.21528544724546]
CLIPでは、ビデオ内の連続するフレームの冗長性のために、離散的な視覚トークンシーケンスを生成する重要な視覚トークン化プロセスが、多くの均一なトークンを生成する。
これにより、計算コストが大幅に増加し、Webアプリケーションにおけるビデオ検索モデルの展開が妨げられる。
本稿では,最も代表的なトークンを抽出し,非意味トークンをドロップするマルチセグメントトークンクラスタリングアルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-05-02T12:02:09Z) - Dense Video Captioning Using Unsupervised Semantic Information [2.022555840231001]
本稿では,複雑な事象をより単純な事象に分解できるという前提に基づいて,教師なしの視覚情報を学習する手法を提案する。
長いビデオを短いフレームシーケンスに分割し、3次元畳み込みニューラルネットワークで潜在表現を抽出した。
この表現は,視覚的特徴しか持たないシナリオにおいて,高密度映像キャプションタスクの性能をいかに活用できるかを実証する。
論文 参考訳(メタデータ) (2021-12-15T20:03:42Z) - VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive
Learning [82.09856883441044]
ビデオ理解は、内部接続をモデル化するグローバルコンテンツを認識することに依存している。
空間領域と時間領域の両方で隣接するビデオトークンをマスクするブロックワイズ戦略を提案する。
また、グローバルコンテンツをさらにキャプチャするために、拡張不要なコントラスト学習手法も追加する。
論文 参考訳(メタデータ) (2021-06-21T16:48:19Z) - Composable Augmentation Encoding for Video Representation Learning [94.2358972764708]
自己教師型ビデオ表現学習におけるコントラスト手法に着目した。
対照的な学習における一般的なパラダイムは、同じインスタンスで異なるデータビューをサンプリングし、異なるデータインスタンスを負として、ポジティブペアを構築することである。
そこで我々は,拡張パラメータの列を明示的に提供する,拡張対応型コントラスト学習フレームワークを提案する。
提案手法は,特定の空間的あるいは時間的拡張に関する情報をエンコードすると同時に,多数のビデオベンチマークで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-04-01T16:48:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。