One Sample Fits All: Approximating All Probabilistic Values Simultaneously and Efficiently
- URL: http://arxiv.org/abs/2410.23808v1
- Date: Thu, 31 Oct 2024 10:47:46 GMT
- Title: One Sample Fits All: Approximating All Probabilistic Values Simultaneously and Efficiently
- Authors: Weida Li, Yaoliang Yu,
- Abstract summary: Probable values have gained recent attention in applications like feature attribution and data valuation.
We propose a one-sample-fits-all framework parameterized by a sampling vector to approximate intermediate terms.
We show that our one-for-all estimator achieves the fastest convergence rate on Beta Shapley values.
- Score: 19.265709097637643
- License:
- Abstract: The concept of probabilistic values, such as Beta Shapley values and weighted Banzhaf values, has gained recent attention in applications like feature attribution and data valuation. However, exact computation of these values is often exponentially expensive, necessitating approximation techniques. Prior research has shown that the choice of probabilistic values significantly impacts downstream performance, with no universally superior option. Consequently, one may have to approximate multiple candidates and select the best-performing one. Although there have been many efforts to develop efficient estimators, none are intended to approximate all probabilistic values both simultaneously and efficiently. In this work, we embark on the first exploration of achieving this goal. Adhering to the principle of maximum sample reuse, we propose a one-sample-fits-all framework parameterized by a sampling vector to approximate intermediate terms that can be converted to any probabilistic value without amplifying scalars. Leveraging the concept of $ (\epsilon, \delta) $-approximation, we theoretically identify a key formula that effectively determines the convergence rate of our framework. By optimizing the sampling vector using this formula, we obtain i) a one-for-all estimator that achieves the currently best time complexity for all probabilistic values on average, and ii) a faster generic estimator with the sampling vector optimally tuned for each probabilistic value. Particularly, our one-for-all estimator achieves the fastest convergence rate on Beta Shapley values, including the well-known Shapley value, both theoretically and empirically. Finally, we establish a connection between probabilistic values and the least square regression used in (regularized) datamodels, showing that our one-for-all estimator can solve a family of datamodels simultaneously.
Related papers
- Stochastic optimization with arbitrary recurrent data sampling [2.1485350418225244]
Most commonly used data sampling algorithms are under mild assumptions.
We show that for a particular class of recurrent optimization algorithms, we do not need any other property.
We show that convergence can be accelerated by selecting sampling algorithms that cover the data set.
arXiv Detail & Related papers (2024-01-15T14:04:50Z) - On diffusion-based generative models and their error bounds: The log-concave case with full convergence estimates [5.13323375365494]
We provide theoretical guarantees for the convergence behaviour of diffusion-based generative models under strongly log-concave data.
Our class of functions used for score estimation is made of Lipschitz continuous functions avoiding any Lipschitzness assumption on the score function.
This approach yields the best known convergence rate for our sampling algorithm.
arXiv Detail & Related papers (2023-11-22T18:40:45Z) - Fast Shapley Value Estimation: A Unified Approach [71.92014859992263]
We propose a straightforward and efficient Shapley estimator, SimSHAP, by eliminating redundant techniques.
In our analysis of existing approaches, we observe that estimators can be unified as a linear transformation of randomly summed values from feature subsets.
Our experiments validate the effectiveness of our SimSHAP, which significantly accelerates the computation of accurate Shapley values.
arXiv Detail & Related papers (2023-11-02T06:09:24Z) - Bivariate Estimation-of-Distribution Algorithms Can Find an Exponential
Number of Optima [12.009357100208353]
We propose the test function EqualBlocksOneMax (EBOM) to support the study of how optimization algorithms handle large sets of optima.
We show that EBOM behaves very similarly to a theoretically ideal model for EBOM, which samples each of the exponentially many optima with the same maximal probability.
arXiv Detail & Related papers (2023-10-06T06:32:07Z) - Statistical Efficiency of Score Matching: The View from Isoperimetry [96.65637602827942]
We show a tight connection between statistical efficiency of score matching and the isoperimetric properties of the distribution being estimated.
We formalize these results both in the sample regime and in the finite regime.
arXiv Detail & Related papers (2022-10-03T06:09:01Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
We take a two-step approach by first modeling the probability distribution and then sampling from that model.
We show that these models can approximate a large class of densities concisely using few evaluations, and present a simple algorithm to effectively sample from these models.
arXiv Detail & Related papers (2021-10-20T12:25:22Z) - A Stochastic Newton Algorithm for Distributed Convex Optimization [62.20732134991661]
We analyze a Newton algorithm for homogeneous distributed convex optimization, where each machine can calculate gradients of the same population objective.
We show that our method can reduce the number, and frequency, of required communication rounds compared to existing methods without hurting performance.
arXiv Detail & Related papers (2021-10-07T17:51:10Z) - Fast Variational AutoEncoder with Inverted Multi-Index for Collaborative
Filtering [59.349057602266]
Variational AutoEncoder (VAE) has been extended as a representative nonlinear method for collaborative filtering.
We propose to decompose the inner-product-based softmax probability based on the inverted multi-index.
FastVAE can outperform the state-of-the-art baselines in terms of both sampling quality and efficiency.
arXiv Detail & Related papers (2021-09-13T08:31:59Z) - Noise-Contrastive Estimation for Multivariate Point Processes [28.23193933174945]
We show how to apply a noise-contrastive estimation method with a less expensive objective.
For the model to achieve the same level of log-likelihood on held-out data, our method needs considerably fewer function evaluations and less wall-clock time.
arXiv Detail & Related papers (2020-11-02T04:09:33Z) - $\gamma$-ABC: Outlier-Robust Approximate Bayesian Computation Based on a
Robust Divergence Estimator [95.71091446753414]
We propose to use a nearest-neighbor-based $gamma$-divergence estimator as a data discrepancy measure.
Our method achieves significantly higher robustness than existing discrepancy measures.
arXiv Detail & Related papers (2020-06-13T06:09:27Z) - Optimal Distributed Subsampling for Maximum Quasi-Likelihood Estimators
with Massive Data [20.79270369203348]
Existing methods mostly focus on subsampling with replacement due to its high computational efficiency.
We first derive optimal subsampling probabilities in the context of quasi-likelihood estimation.
We develop a distributed subsampling framework, in which statistics are computed simultaneously on smaller partitions of the full data.
arXiv Detail & Related papers (2020-05-21T02:46:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.