Reasons and Solutions for the Decline in Model Performance after Editing
- URL: http://arxiv.org/abs/2410.23843v1
- Date: Thu, 31 Oct 2024 11:49:44 GMT
- Title: Reasons and Solutions for the Decline in Model Performance after Editing
- Authors: Xiusheng Huang, Jiaxiang Liu, Yequan Wang, Kang Liu,
- Abstract summary: This paper explores the reasons for the performance decline of the edited model and optimize the editing method.
The performance of the editing model is mainly affected by the diversity of editing targets and sequence length.
In order to improve the performance of the editing model, this paper proposes a Dump for Sequence (D4S) method.
- Score: 17.756172082400163
- License:
- Abstract: Knowledge editing technology has received widespread attention for low-cost updates of incorrect or outdated knowledge in large-scale language models. However, recent research has found that edited models often exhibit varying degrees of performance degradation. The reasons behind this phenomenon and potential solutions have not yet been provided. In order to investigate the reasons for the performance decline of the edited model and optimize the editing method, this work explores the underlying reasons from both data and model perspectives. Specifically, 1) from a data perspective, to clarify the impact of data on the performance of editing models, this paper first constructs a Multi-Question Dataset (MQD) to evaluate the impact of different types of editing data on model performance. The performance of the editing model is mainly affected by the diversity of editing targets and sequence length, as determined through experiments. 2) From a model perspective, this article explores the factors that affect the performance of editing models. The results indicate a strong correlation between the L1-norm of the editing model layer and the editing accuracy, and clarify that this is an important factor leading to the bottleneck of editing performance. Finally, in order to improve the performance of the editing model, this paper further proposes a Dump for Sequence (D4S) method, which successfully overcomes the previous editing bottleneck by reducing the L1-norm of the editing layer, allowing users to perform multiple effective edits and minimizing model damage. Our code is available at https://github.com/nlpkeg/D4S.
Related papers
- Neuron-Level Sequential Editing for Large Language Models [19.324852774144752]
We introduce textbfNeuron-level textbfSequential textbfEditing (NSE) for supporting sequential model editing.
Specifically, we optimize the target layer's hidden states using the model's original weights to prevent model failure.
Our experiments demonstrate that NSE significantly outperforms current modifying parameters model editing methods.
arXiv Detail & Related papers (2024-10-05T05:52:22Z) - Better Call SAUL: Fluent and Consistent Language Model Editing with Generation Regularization [48.07144492109635]
Large language models need to be updated regularly.
Model editing is challenging as it might also affect knowledge that is unrelated to the new data.
We propose SAUL, a streamlined model editing method that uses sentence concatenation with augmented random facts for generation regularization.
arXiv Detail & Related papers (2024-10-03T12:28:13Z) - Fundamental Problems With Model Editing: How Should Rational Belief Revision Work in LLMs? [61.68363765350178]
This paper critiques the standard formulation of the model editing problem and proposes a formal testbed for model editing research.
We first describe 12 open problems with model editing, based on challenges with (1) defining the problem, (2) developing benchmarks, and (3) assuming LLMs have editable beliefs in the first place.
Next, we introduce a semi-synthetic dataset for model editing based on Wikidata, where we can evaluate edits against labels given by an idealized Bayesian agent.
arXiv Detail & Related papers (2024-06-27T17:33:03Z) - Is Bigger Edit Batch Size Always Better? -- An Empirical Study on Model Editing with Llama-3 [2.569159339315845]
This study presents a targeted model editing analysis focused on the latest large language model, Llama-3.
We identify the most effective layers for targeted edits through an evaluation that encompasses up to 4096 edits.
arXiv Detail & Related papers (2024-05-01T17:50:37Z) - The Butterfly Effect of Model Editing: Few Edits Can Trigger Large Language Models Collapse [58.0132400208411]
Even a single edit can trigger model collapse, manifesting as significant performance degradation in various benchmark tasks.
benchmarking Large Language Models after each edit is impractically time-consuming and resource-intensive.
We have utilized GPT-3.5 to develop a new dataset, HardEdit, based on hard cases.
arXiv Detail & Related papers (2024-02-15T01:50:38Z) - Model Editing Harms General Abilities of Large Language Models: Regularization to the Rescue [122.20016030723043]
We evaluate the side effects of model editing on large language models (LLMs)
Our analysis reveals that the side effects are caused by model editing altering the original model weights excessively.
To mitigate this, a method named RECT is proposed to regularize the edit update weights.
arXiv Detail & Related papers (2024-01-09T18:03:15Z) - Edit at your own risk: evaluating the robustness of edited models to
distribution shifts [0.0]
We investigate how model editing affects the general robustness of a model, as well as the robustness of the specific behavior targeted by the edit.
We find that edits tend to reduce general robustness, but that the degree of degradation depends on the editing algorithm and layers chosen.
Motivated by these observations we introduce a new model editing algorithm, 1-layer (1-LI), which uses weight-space to navigate the trade-off between editing task accuracy and general robustness.
arXiv Detail & Related papers (2023-02-28T19:41:37Z) - Does Localization Inform Editing? Surprising Differences in
Causality-Based Localization vs. Knowledge Editing in Language Models [68.03946716358335]
We find that we can change how a fact is stored in a model by editing weights that are in a different location than where existing methods suggest that the fact is stored.
This is surprising because we would expect that localizing facts to specific model parameters would tell us where to manipulate knowledge in models.
Our results suggest, counterintuitively, that better mechanistic understanding of how pretrained language models work may not always translate to insights about how to best change their behavior.
arXiv Detail & Related papers (2023-01-10T21:26:08Z) - Memory-Based Model Editing at Scale [102.28475739907498]
Existing model editors struggle to accurately model an edit's intended scope.
We propose Semi-Parametric Editing with a Retrieval-Augmented Counterfactual Model (SERAC)
SERAC stores edits in an explicit memory and learns to reason over them to modulate the base model's predictions as needed.
arXiv Detail & Related papers (2022-06-13T23:40:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.