Noise as a Double-Edged Sword: Reinforcement Learning Exploits Randomized Defenses in Neural Networks
- URL: http://arxiv.org/abs/2410.23870v1
- Date: Thu, 31 Oct 2024 12:22:19 GMT
- Title: Noise as a Double-Edged Sword: Reinforcement Learning Exploits Randomized Defenses in Neural Networks
- Authors: Steve Bakos, Pooria Madani, Heidar Davoudi,
- Abstract summary: This study investigates the potential for noise-based defenses to inadvertently aid evasion attacks in certain scenarios.
In some cases, noise-based defenses can inadvertently create an adversarial training loop beneficial to the RL attacker.
It challenges the assumption that randomness universally enhances defense against evasion attacks.
- Score: 1.788784870849724
- License:
- Abstract: This study investigates a counterintuitive phenomenon in adversarial machine learning: the potential for noise-based defenses to inadvertently aid evasion attacks in certain scenarios. While randomness is often employed as a defensive strategy against adversarial examples, our research reveals that this approach can sometimes backfire, particularly when facing adaptive attackers using reinforcement learning (RL). Our findings show that in specific cases, especially with visually noisy classes, the introduction of noise in the classifier's confidence values can be exploited by the RL attacker, leading to a significant increase in evasion success rates. In some instances, the noise-based defense scenario outperformed other strategies by up to 20\% on a subset of classes. However, this effect was not consistent across all classifiers tested, highlighting the complexity of the interaction between noise-based defenses and different models. These results suggest that in some cases, noise-based defenses can inadvertently create an adversarial training loop beneficial to the RL attacker. Our study emphasizes the need for a more nuanced approach to defensive strategies in adversarial machine learning, particularly in safety-critical applications. It challenges the assumption that randomness universally enhances defense against evasion attacks and highlights the importance of considering adaptive, RL-based attackers when designing robust defense mechanisms.
Related papers
- Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
Current defense mainly focuses on the known attacks, but the adversarial robustness to the unknown attacks is seriously overlooked.
We propose an attack-agnostic defense method named Meta Invariance Defense (MID)
We show that MID simultaneously achieves robustness to the imperceptible adversarial perturbations in high-level image classification and attack-suppression in low-level robust image regeneration.
arXiv Detail & Related papers (2024-04-04T10:10:38Z) - On the Difficulty of Defending Contrastive Learning against Backdoor
Attacks [58.824074124014224]
We show how contrastive backdoor attacks operate through distinctive mechanisms.
Our findings highlight the need for defenses tailored to the specificities of contrastive backdoor attacks.
arXiv Detail & Related papers (2023-12-14T15:54:52Z) - Defending Observation Attacks in Deep Reinforcement Learning via
Detection and Denoising [3.2023814100005907]
Attacks manifesting as perturbations in the observation space managed by the external environment have been shown to downgrade policy performance.
To defend against these attacks, we propose a novel defense strategy using a detect-and-denoise schema.
Our solution does not require sampling data in an environment under attack, thereby greatly reducing risk during training.
arXiv Detail & Related papers (2022-06-14T22:28:30Z) - Adversarial Robustness of Deep Reinforcement Learning based Dynamic
Recommender Systems [50.758281304737444]
We propose to explore adversarial examples and attack detection on reinforcement learning-based interactive recommendation systems.
We first craft different types of adversarial examples by adding perturbations to the input and intervening on the casual factors.
Then, we augment recommendation systems by detecting potential attacks with a deep learning-based classifier based on the crafted data.
arXiv Detail & Related papers (2021-12-02T04:12:24Z) - Policy Smoothing for Provably Robust Reinforcement Learning [109.90239627115336]
We study the provable robustness of reinforcement learning against norm-bounded adversarial perturbations of the inputs.
We generate certificates that guarantee that the total reward obtained by the smoothed policy will not fall below a certain threshold under a norm-bounded adversarial of perturbation the input.
arXiv Detail & Related papers (2021-06-21T21:42:08Z) - Theoretical Study of Random Noise Defense against Query-Based Black-Box
Attacks [72.8152874114382]
In this work, we study a simple but promising defense technique, dubbed Random Noise Defense (RND) against query-based black-box attacks.
It is lightweight and can be directly combined with any off-the-shelf models and other defense strategies.
In this work, we present solid theoretical analyses to demonstrate that the defense effect of RND against the query-based black-box attack and the corresponding adaptive attack heavily depends on the magnitude ratio.
arXiv Detail & Related papers (2021-04-23T08:39:41Z) - Removing Adversarial Noise in Class Activation Feature Space [160.78488162713498]
We propose to remove adversarial noise by implementing a self-supervised adversarial training mechanism in a class activation feature space.
We train a denoising model to minimize the distances between the adversarial examples and the natural examples in the class activation feature space.
Empirical evaluations demonstrate that our method could significantly enhance adversarial robustness in comparison to previous state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-19T10:42:24Z) - Mitigating Gradient-based Adversarial Attacks via Denoising and
Compression [7.305019142196582]
Gradient-based adversarial attacks on deep neural networks pose a serious threat.
They can be deployed by adding imperceptible perturbations to the test data of any network.
Denoising and dimensionality reduction are two distinct methods that have been investigated to combat such attacks.
arXiv Detail & Related papers (2021-04-03T22:57:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.