Temporal and Spatial Super Resolution with Latent Diffusion Model in Medical MRI images
- URL: http://arxiv.org/abs/2410.23898v1
- Date: Tue, 29 Oct 2024 20:13:00 GMT
- Title: Temporal and Spatial Super Resolution with Latent Diffusion Model in Medical MRI images
- Authors: Vishal Dubey,
- Abstract summary: Super Resolution (SR) plays a critical role in computer vision, particularly in medical imaging.
We propose to use a Latent Diffusion Model (LDM) combined with a Vector Quantised GAN (VQGAN)-based encoder-decoder architecture for joint super resolution.
- Score: 0.0
- License:
- Abstract: Super Resolution (SR) plays a critical role in computer vision, particularly in medical imaging, where hardware and acquisition time constraints often result in low spatial and temporal resolution. While diffusion models have been applied for both spatial and temporal SR, few studies have explored their use for joint spatial and temporal SR, particularly in medical imaging. In this work, we address this gap by proposing to use a Latent Diffusion Model (LDM) combined with a Vector Quantised GAN (VQGAN)-based encoder-decoder architecture for joint super resolution. We frame SR as an image denoising problem, focusing on improving both spatial and temporal resolution in medical images. Using the cardiac MRI dataset from the Data Science Bowl Cardiac Challenge, consisting of 2D cine images with a spatial resolution of 256x256 and 8-14 slices per time-step, we demonstrate the effectiveness of our approach. Our LDM model achieves Peak Signal to Noise Ratio (PSNR) of 30.37, Structural Similarity Index (SSIM) of 0.7580, and Learned Perceptual Image Patch Similarity (LPIPS) of 0.2756, outperforming simple baseline method by 5% in PSNR, 6.5% in SSIM, 39% in LPIPS. Our LDM model generates images with high fidelity and perceptual quality with 15 diffusion steps. These results suggest that LDMs hold promise for advancing super resolution in medical imaging, potentially enhancing diagnostic accuracy and patient outcomes. Code link is also shared.
Related papers
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.
Our model is based on neural operators, a discretization-agnostic architecture.
Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Attention-aware non-rigid image registration for accelerated MR imaging [10.47044784972188]
We introduce an attention-aware deep learning-based framework that can perform non-rigid pairwise registration for fully sampled and accelerated MRI.
We extract local visual representations to build similarity maps between the registered image pairs at multiple resolution levels.
We demonstrate that our model derives reliable and consistent motion fields across different sampling trajectories.
arXiv Detail & Related papers (2024-04-26T14:25:07Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - DDoS-UNet: Incorporating temporal information using Dynamic Dual-channel
UNet for enhancing super-resolution of dynamic MRI [0.27998963147546135]
Magnetic resonance imaging (MRI) provides high spatial resolution and excellent soft-tissue contrast without using harmful ionising radiation.
MRI with high temporal resolution suffers from limited spatial resolution.
Deep learning based super-resolution approaches have been proposed to mitigate this trade-off.
This research addresses the problem by creating a deep learning model which attempts to learn both spatial and temporal relationships.
arXiv Detail & Related papers (2022-02-10T22:20:58Z) - High-Resolution Pelvic MRI Reconstruction Using a Generative Adversarial
Network with Attention and Cyclic Loss [3.4358954898228604]
Super-resolution methods have shown excellent performance in accelerating MRI.
In some circumstances, it is difficult to obtain high-resolution images even with prolonged scan time.
We proposed a novel super-resolution method that uses a generative adversarial network (GAN) with cyclic loss and attention mechanism.
arXiv Detail & Related papers (2021-07-21T10:07:22Z) - Towards Ultrafast MRI via Extreme k-Space Undersampling and
Superresolution [65.25508348574974]
We go below the MRI acceleration factors reported by all published papers that reference the original fastMRI challenge.
We consider powerful deep learning based image enhancement methods to compensate for the underresolved images.
The quality of the reconstructed images surpasses that of the other methods, yielding an MSE of 0.00114, a PSNR of 29.6 dB, and an SSIM of 0.956 at x16 acceleration factor.
arXiv Detail & Related papers (2021-03-04T10:45:01Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
Single Image Super-Resolution (SISR) is a technique aimed to obtain high-resolution (HR) details from one single low-resolution input image.
Deep learning extracts prior knowledge from big datasets and produces superior MRI images from the low-resolution counterparts.
arXiv Detail & Related papers (2021-02-25T14:52:23Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
We propose a diffusion encoding scheme, called Slice-Interleaved Diffusion.
SIDE, that interleaves each diffusion-weighted (DW) image volume with slices encoded with different diffusion gradients.
We also present a method based on deep learning for effective reconstruction of DW images from the highly slice-undersampled data.
arXiv Detail & Related papers (2020-02-25T14:48:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.