The Meeseeks Mesh: Spatially Consistent 3D Adversarial Objects for BEV Detector
- URL: http://arxiv.org/abs/2505.22499v2
- Date: Thu, 29 May 2025 07:38:20 GMT
- Title: The Meeseeks Mesh: Spatially Consistent 3D Adversarial Objects for BEV Detector
- Authors: Aixuan Li, Mochu Xiang, Jing Zhang, Yuchao Dai,
- Abstract summary: 3D object detection is a critical component in autonomous driving systems.<n>In this paper, we investigate the vulnerability of 3D object detection models to 3D adversarial attacks.<n>We generate non-invasive 3D adversarial objects tailored for real-world attack scenarios.
- Score: 37.74333887056029
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D object detection is a critical component in autonomous driving systems. It allows real-time recognition and detection of vehicles, pedestrians and obstacles under varying environmental conditions. Among existing methods, 3D object detection in the Bird's Eye View (BEV) has emerged as the mainstream framework. To guarantee a safe, robust and trustworthy 3D object detection, 3D adversarial attacks are investigated, where attacks are placed in 3D environments to evaluate the model performance, e.g. putting a film on a car, clothing a pedestrian. The vulnerability of 3D object detection models to 3D adversarial attacks serves as an important indicator to evaluate the robustness of the model against perturbations. To investigate this vulnerability, we generate non-invasive 3D adversarial objects tailored for real-world attack scenarios. Our method verifies the existence of universal adversarial objects that are spatially consistent across time and camera views. Specifically, we employ differentiable rendering techniques to accurately model the spatial relationship between adversarial objects and the target vehicle. Furthermore, we introduce an occlusion-aware module to enhance visual consistency and realism under different viewpoints. To maintain attack effectiveness across multiple frames, we design a BEV spatial feature-guided optimization strategy. Experimental results demonstrate that our approach can reliably suppress vehicle predictions from state-of-the-art 3D object detectors, serving as an important tool to test robustness of 3D object detection models before deployment. Moreover, the generated adversarial objects exhibit strong generalization capabilities, retaining its effectiveness at various positions and distances in the scene.
Related papers
- RQR3D: Reparametrizing the regression targets for BEV-based 3D object detection [0.4604003661048266]
Bird's-eye view (BEV)-based perception approaches have emerged as superior alternatives to perspective-based solutions.<n>We propose Restricted Quadrilateral Representation to define 3D regression targets.<n>RQR3D regresses the smallest horizontal bounding box encapsulating the oriented box, along with the offsets between the corners of these two boxes.
arXiv Detail & Related papers (2025-05-23T10:52:34Z) - DriveGEN: Generalized and Robust 3D Detection in Driving via Controllable Text-to-Image Diffusion Generation [49.32104127246474]
DriveGEN is a training-free controllable Text-to-Image Diffusion Generation.<n>It consistently preserves objects with precise 3D geometry across diverse Out-of-Distribution generations.
arXiv Detail & Related papers (2025-03-14T06:35:38Z) - Street Gaussians without 3D Object Tracker [86.62329193275916]
Existing methods rely on labor-intensive manual labeling of object poses to reconstruct dynamic objects in canonical space.<n>We propose a stable object tracking module by leveraging associations from 2D deep trackers within a 3D object fusion strategy.<n>We address inevitable tracking errors by further introducing a motion learning strategy in an implicit feature space that autonomously corrects trajectory errors and recovers missed detections.
arXiv Detail & Related papers (2024-12-07T05:49:42Z) - Uncertainty Estimation for 3D Object Detection via Evidential Learning [63.61283174146648]
We introduce a framework for quantifying uncertainty in 3D object detection by leveraging an evidential learning loss on Bird's Eye View representations in the 3D detector.
We demonstrate both the efficacy and importance of these uncertainty estimates on identifying out-of-distribution scenes, poorly localized objects, and missing (false negative) detections.
arXiv Detail & Related papers (2024-10-31T13:13:32Z) - Robustness-Aware 3D Object Detection in Autonomous Driving: A Review and Outlook [19.539295469044813]
This study emphasizes the importance of robustness, alongside accuracy and latency, in evaluating perception systems under practical scenarios.
Our work presents an extensive survey of camera-only, LiDAR-only, and multi-modal 3D object detection algorithms, thoroughly evaluating their trade-off between accuracy, latency, and robustness.
Among these, multi-modal 3D detection approaches exhibit superior robustness, and a novel taxonomy is introduced to reorganize the literature for enhanced clarity.
arXiv Detail & Related papers (2024-01-12T12:35:45Z) - AdvMono3D: Advanced Monocular 3D Object Detection with Depth-Aware
Robust Adversarial Training [64.14759275211115]
We propose a depth-aware robust adversarial training method for monocular 3D object detection, dubbed DART3D.
Our adversarial training approach capitalizes on the inherent uncertainty, enabling the model to significantly improve its robustness against adversarial attacks.
arXiv Detail & Related papers (2023-09-03T07:05:32Z) - SOGDet: Semantic-Occupancy Guided Multi-view 3D Object Detection [19.75965521357068]
We propose a novel approach called SOGDet (Semantic-Occupancy Guided Multi-view 3D Object Detection) to improve the accuracy of 3D object detection.
Our results show that SOGDet consistently enhance the performance of three baseline methods in terms of nuScenes Detection Score (NDS) and mean Average Precision (mAP)
This indicates that the combination of 3D object detection and 3D semantic occupancy leads to a more comprehensive perception of the 3D environment, thereby aiding build more robust autonomous driving systems.
arXiv Detail & Related papers (2023-08-26T07:38:21Z) - A Comprehensive Study of the Robustness for LiDAR-based 3D Object
Detectors against Adversarial Attacks [84.10546708708554]
3D object detectors are increasingly crucial for security-critical tasks.
It is imperative to understand their robustness against adversarial attacks.
This paper presents the first comprehensive evaluation and analysis of the robustness of LiDAR-based 3D detectors under adversarial attacks.
arXiv Detail & Related papers (2022-12-20T13:09:58Z) - Homography Loss for Monocular 3D Object Detection [54.04870007473932]
A differentiable loss function, termed as Homography Loss, is proposed to achieve the goal, which exploits both 2D and 3D information.
Our method yields the best performance compared with the other state-of-the-arts by a large margin on KITTI 3D datasets.
arXiv Detail & Related papers (2022-04-02T03:48:03Z) - Kinematic 3D Object Detection in Monocular Video [123.7119180923524]
We propose a novel method for monocular video-based 3D object detection which carefully leverages kinematic motion to improve precision of 3D localization.
We achieve state-of-the-art performance on monocular 3D object detection and the Bird's Eye View tasks within the KITTI self-driving dataset.
arXiv Detail & Related papers (2020-07-19T01:15:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.