Scalable Kernel Inverse Optimization
- URL: http://arxiv.org/abs/2410.23952v1
- Date: Thu, 31 Oct 2024 14:06:43 GMT
- Title: Scalable Kernel Inverse Optimization
- Authors: Youyuan Long, Tolga Ok, Pedro Zattoni Scroccaro, Peyman Mohajerin Esfahani,
- Abstract summary: Inverse optimization is a framework for learning the unknown objective function of an expert decision-maker from a past dataset.
We extend the hypothesis class of IO objective functions to a reproducing a kernel Hilbert space.
We show that a variant of the representer theorem holds for a specific training loss, allowing the reformulation of the problem as a finite-dimensional convex optimization program.
- Score: 2.799896314754615
- License:
- Abstract: Inverse Optimization (IO) is a framework for learning the unknown objective function of an expert decision-maker from a past dataset. In this paper, we extend the hypothesis class of IO objective functions to a reproducing kernel Hilbert space (RKHS), thereby enhancing feature representation to an infinite-dimensional space. We demonstrate that a variant of the representer theorem holds for a specific training loss, allowing the reformulation of the problem as a finite-dimensional convex optimization program. To address scalability issues commonly associated with kernel methods, we propose the Sequential Selection Optimization (SSO) algorithm to efficiently train the proposed Kernel Inverse Optimization (KIO) model. Finally, we validate the generalization capabilities of the proposed KIO model and the effectiveness of the SSO algorithm through learning-from-demonstration tasks on the MuJoCo benchmark.
Related papers
- An Adaptive Dimension Reduction Estimation Method for High-dimensional
Bayesian Optimization [6.79843988450982]
We propose a two-step optimization framework to extend BO to high-dimensional settings.
Our algorithm offers the flexibility to operate these steps either concurrently or in sequence.
Numerical experiments validate the efficacy of our method in challenging scenarios.
arXiv Detail & Related papers (2024-03-08T16:21:08Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Extrinsic Bayesian Optimizations on Manifolds [1.3477333339913569]
We propose an extrinsic Bayesian optimization (eBO) framework for general optimization problems on Euclid manifold.
Our approach is to employ extrinsic Gaussian processes by first embedding the manifold onto some higher dimensionalean space.
This leads to efficient and scalable algorithms for optimization over complex manifold.
arXiv Detail & Related papers (2022-12-21T06:10:12Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - Directed particle swarm optimization with Gaussian-process-based
function forecasting [15.733136147164032]
Particle swarm optimization (PSO) is an iterative search method that moves a set of candidate solution around a search-space towards the best known global and local solutions with randomized step lengths.
We show that our algorithm attains desirable properties for exploratory and exploitative behavior.
arXiv Detail & Related papers (2021-02-08T13:02:57Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - Accelerated Algorithms for Convex and Non-Convex Optimization on
Manifolds [9.632674803757475]
We propose a scheme for solving convex and non- optimization problems on distance.
Our proposed algorithm adapts to the level of complexity in the objective function.
arXiv Detail & Related papers (2020-10-18T02:48:22Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - Sequential Subspace Search for Functional Bayesian Optimization
Incorporating Experimenter Intuition [63.011641517977644]
Our algorithm generates a sequence of finite-dimensional random subspaces of functional space spanned by a set of draws from the experimenter's Gaussian Process.
Standard Bayesian optimisation is applied on each subspace, and the best solution found used as a starting point (origin) for the next subspace.
We test our algorithm in simulated and real-world experiments, namely blind function matching, finding the optimal precipitation-strengthening function for an aluminium alloy, and learning rate schedule optimisation for deep networks.
arXiv Detail & Related papers (2020-09-08T06:54:11Z) - On the implementation of a global optimization method for mixed-variable
problems [0.30458514384586394]
The algorithm is based on the radial basis function of Gutmann and the metric response surface method of Regis and Shoemaker.
We propose several modifications aimed at generalizing and improving these two algorithms.
arXiv Detail & Related papers (2020-09-04T13:36:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.