Optimization-Free Diffusion Model -- A Perturbation Theory Approach
- URL: http://arxiv.org/abs/2505.23652v2
- Date: Sat, 14 Jun 2025 13:04:11 GMT
- Title: Optimization-Free Diffusion Model -- A Perturbation Theory Approach
- Authors: Yuehaw Khoo, Mathias Oster, Yifan Peng,
- Abstract summary: Diffusion models have emerged as a powerful framework in generative modeling.<n>We propose an alternative method that is both optimization-free and forward SDE-free.<n>We demonstrate the effectiveness of our method on high-dimensional Boltzmann distributions and real-world datasets.
- Score: 12.756355928431455
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have emerged as a powerful framework in generative modeling, typically relying on optimizing neural networks to estimate the score function via forward SDE simulations. In this work, we propose an alternative method that is both optimization-free and forward SDE-free. By expanding the score function in a sparse set of eigenbasis of the backward Kolmogorov operator associated with the diffusion process, we reformulate score estimation as the solution to a linear system, avoiding iterative optimization and time-dependent sample generation. We analyze the approximation error using perturbation theory and demonstrate the effectiveness of our method on high-dimensional Boltzmann distributions and real-world datasets.
Related papers
- Divergence Minimization Preference Optimization for Diffusion Model Alignment [58.651951388346525]
Divergence Minimization Preference Optimization (DMPO) is a principled method for aligning diffusion models by minimizing reverse KL divergence.<n>Our results show that diffusion models fine-tuned with DMPO can consistently outperform or match existing techniques.<n>DMPO unlocks a robust and elegant pathway for preference alignment, bridging principled theory with practical performance in diffusion models.
arXiv Detail & Related papers (2025-07-10T07:57:30Z) - Self-Boost via Optimal Retraining: An Analysis via Approximate Message Passing [58.52119063742121]
Retraining a model using its own predictions together with the original, potentially noisy labels is a well-known strategy for improving the model performance.<n>This paper addresses the question of how to optimally combine the model's predictions and the provided labels.<n>Our main contribution is the derivation of the Bayes optimal aggregator function to combine the current model's predictions and the given labels.
arXiv Detail & Related papers (2025-05-21T07:16:44Z) - Stochastic Optimization with Optimal Importance Sampling [49.484190237840714]
We propose an iterative-based algorithm that jointly updates the decision and the IS distribution without requiring time-scale separation between the two.<n>Our method achieves the lowest possible variable variance and guarantees global convergence under convexity of the objective and mild assumptions on the IS distribution family.
arXiv Detail & Related papers (2025-04-04T16:10:18Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Variational Schrödinger Diffusion Models [14.480273869571468]
Schr"odinger bridge (SB) has emerged as the go-to method for optimizing transportation plans in diffusion models.<n>We leverage variational inference to linearize the forward score functions (variational scores) of SB.<n>We propose the variational Schr"odinger diffusion model (VSDM), where the forward process is a multivariate diffusion and the variational scores are adaptively optimized for efficient transport.
arXiv Detail & Related papers (2024-05-08T04:01:40Z) - Probabilistic Reduced-Dimensional Vector Autoregressive Modeling with
Oblique Projections [0.7614628596146602]
We propose a reduced-dimensional vector autoregressive model to extract low-dimensional dynamics from noisy data.
An optimal oblique decomposition is derived for the best predictability regarding prediction error covariance.
The superior performance and efficiency of the proposed approach are demonstrated using data sets from a synthesized Lorenz system and an industrial process from Eastman Chemical.
arXiv Detail & Related papers (2024-01-14T05:38:10Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
We introduce an ensemble Kalman filter (EnKF) into the non-mean-field (NMF) variational inference framework to approximate the posterior distribution of the latent states.
This novel marriage between EnKF and GPSSM not only eliminates the need for extensive parameterization in learning variational distributions, but also enables an interpretable, closed-form approximation of the evidence lower bound (ELBO)
We demonstrate that the resulting EnKF-aided online algorithm embodies a principled objective function by ensuring data-fitting accuracy while incorporating model regularizations to mitigate overfitting.
arXiv Detail & Related papers (2023-12-10T15:22:30Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
Noise-contrastive estimation(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise.
In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models.
arXiv Detail & Related papers (2023-06-13T01:18:16Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Deep Learning Aided Laplace Based Bayesian Inference for Epidemiological
Systems [2.596903831934905]
We propose a hybrid approach where Laplace-based Bayesian inference is combined with an ANN architecture for obtaining approximations to the ODE trajectories.
The effectiveness of our proposed methods is demonstrated using an epidemiological system with non-analytical solutions, the Susceptible-Infectious-Removed (SIR) model for infectious diseases.
arXiv Detail & Related papers (2022-10-17T09:02:41Z) - Iterative Surrogate Model Optimization (ISMO): An active learning
algorithm for PDE constrained optimization with deep neural networks [14.380314061763508]
We present a novel active learning algorithm, termed as iterative surrogate model optimization (ISMO)
This algorithm is based on deep neural networks and its key feature is the iterative selection of training data through a feedback loop between deep neural networks and any underlying standard optimization algorithm.
arXiv Detail & Related papers (2020-08-13T07:31:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.