Stochastic Reconstruction of Gappy Lagrangian Turbulent Signals by Conditional Diffusion Models
- URL: http://arxiv.org/abs/2410.23971v1
- Date: Thu, 31 Oct 2024 14:26:10 GMT
- Title: Stochastic Reconstruction of Gappy Lagrangian Turbulent Signals by Conditional Diffusion Models
- Authors: Tianyi Li, Luca Biferale, Fabio Bonaccorso, Michele Buzzicotti, Luca Centurioni,
- Abstract summary: We present a method for reconstructing missing spatial and velocity data along the trajectories of small objects passively advected by turbulent flows.
Our approach makes use of conditional generative diffusion models, a recently proposed data-driven machine learning technique.
- Score: 1.7810134788247751
- License:
- Abstract: We present a stochastic method for reconstructing missing spatial and velocity data along the trajectories of small objects passively advected by turbulent flows with a wide range of temporal or spatial scales, such as small balloons in the atmosphere or drifters in the ocean. Our approach makes use of conditional generative diffusion models, a recently proposed data-driven machine learning technique. We solve the problem for two paradigmatic open problems, the case of 3D tracers in homogeneous and isotropic turbulence, and 2D trajectories from the NOAA-funded Global Drifter Program. We show that for both cases, our method is able to reconstruct velocity signals retaining non-trivial scale-by-scale properties that are highly non-Gaussian and intermittent. A key feature of our method is its flexibility in dealing with the location and shape of data gaps, as well as its ability to naturally exploit correlations between different components, leading to superior accuracy, with respect to Gaussian process regressions, for both pointwise reconstruction and statistical expressivity. Our method shows promising applications also to a wide range of other Lagrangian problems, including multi-particle dispersion in turbulence, dynamics of charged particles in astrophysics and plasma physics, and pedestrian dynamics.
Related papers
- Learning to Approximate Particle Smoothing Trajectories via Diffusion Generative Models [16.196738720721417]
Learning systems from sparse observations is critical in numerous fields, including biology, finance, and physics.
We introduce a method that integrates conditional particle filtering with ancestral sampling and diffusion models.
We demonstrate the approach in time-series generation and tasks, including vehicle tracking and single-cell RNA sequencing data.
arXiv Detail & Related papers (2024-06-01T21:54:01Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Decomposed Diffusion Sampler for Accelerating Large-Scale Inverse
Problems [64.29491112653905]
We propose a novel and efficient diffusion sampling strategy that synergistically combines the diffusion sampling and Krylov subspace methods.
Specifically, we prove that if tangent space at a denoised sample by Tweedie's formula forms a Krylov subspace, then the CG with the denoised data ensures the data consistency update to remain in the tangent space.
Our proposed method achieves more than 80 times faster inference time than the previous state-of-the-art method.
arXiv Detail & Related papers (2023-03-10T07:42:49Z) - Data-driven low-dimensional dynamic model of Kolmogorov flow [0.0]
Reduced order models (ROMs) that capture flow dynamics are of interest for decreasing computational costs for simulation.
This work presents a data-driven framework for minimal-dimensional models that effectively capture the dynamics and properties of the flow.
We apply this to Kolmogorov flow in a regime consisting of chaotic and intermittent behavior.
arXiv Detail & Related papers (2022-10-29T23:05:39Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
We present a method called Manifold Interpolating Optimal-Transport Flow (MIOFlow)
MIOFlow learns, continuous population dynamics from static snapshot samples taken at sporadic timepoints.
We evaluate our method on simulated data with bifurcations and merges, as well as scRNA-seq data from embryoid body differentiation, and acute myeloid leukemia treatment.
arXiv Detail & Related papers (2022-06-29T22:19:03Z) - Learning the structure of wind: A data-driven nonlocal turbulence model
for the atmospheric boundary layer [0.0]
We develop a novel data-driven approach to modeling the atmospheric boundary layer.
This approach leads to a nonlocal, anisotropic synthetic turbulence model which we refer to as the deep rapid distortion (DRD) model.
arXiv Detail & Related papers (2021-07-23T06:41:33Z) - Neural Ordinary Differential Equations for Data-Driven Reduced Order
Modeling of Environmental Hydrodynamics [4.547988283172179]
We explore the use of Neural Ordinary Differential Equations for fluid flow simulation.
Test problems we consider include incompressible flow around a cylinder and real-world applications of shallow water hydrodynamics in riverine and estuarine systems.
Our findings indicate that Neural ODEs provide an elegant framework for stable and accurate evolution of latent-space dynamics with a promising potential of extrapolatory predictions.
arXiv Detail & Related papers (2021-04-22T19:20:47Z) - Fast Gravitational Approach for Rigid Point Set Registration with
Ordinary Differential Equations [79.71184760864507]
This article introduces a new physics-based method for rigid point set alignment called Fast Gravitational Approach (FGA)
In FGA, the source and target point sets are interpreted as rigid particle swarms with masses interacting in a globally multiply-linked manner while moving in a simulated gravitational force field.
We show that the new method class has characteristics not found in previous alignment methods.
arXiv Detail & Related papers (2020-09-28T15:05:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.