Riemannian Neural Geodesic Interpolant
- URL: http://arxiv.org/abs/2504.15736v1
- Date: Tue, 22 Apr 2025 09:28:29 GMT
- Title: Riemannian Neural Geodesic Interpolant
- Authors: Jiawen Wu, Bingguang Chen, Yuyi Zhou, Qi Meng, Rongchan Zhu, Zhi-Ming Ma,
- Abstract summary: Differential interpolants are efficient generative models that bridge two arbitrary probability density functions in finite time.<n>These models are primarily developed in Euclidean space, and are therefore limited in their application to many distribution learning problems.<n>We introduce the Riemannian Geodesic Interpolant (RNGI) model, which interpolates between two probability densities.
- Score: 15.653104625330062
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stochastic interpolants are efficient generative models that bridge two arbitrary probability density functions in finite time, enabling flexible generation from the source to the target distribution or vice versa. These models are primarily developed in Euclidean space, and are therefore limited in their application to many distribution learning problems defined on Riemannian manifolds in real-world scenarios. In this work, we introduce the Riemannian Neural Geodesic Interpolant (RNGI) model, which interpolates between two probability densities on a Riemannian manifold along the stochastic geodesics, and then samples from one endpoint as the final state using the continuous flow originating from the other endpoint. We prove that the temporal marginal density of RNGI solves a transport equation on the Riemannian manifold. After training the model's the neural velocity and score fields, we propose the Embedding Stochastic Differential Equation (E-SDE) algorithm for stochastic sampling of RNGI. E-SDE significantly improves the sampling quality by reducing the accumulated error caused by the excessive intrinsic discretization of Riemannian Brownian motion in the classical Geodesic Random Walk (GRW) algorithm. We also provide theoretical bounds on the generative bias measured in terms of KL-divergence. Finally, we demonstrate the effectiveness of the proposed RNGI and E-SDE through experiments conducted on both collected and synthetic distributions on S2 and SO(3).
Related papers
- Generative Latent Neural PDE Solver using Flow Matching [8.397730500554047]
We propose a latent diffusion model for PDE simulation that embeds the PDE state in a lower-dimensional latent space.<n>Our framework uses an autoencoder to map different types of meshes onto a unified structured latent grid, capturing complex geometries.<n> Numerical experiments show that the proposed model outperforms several deterministic baselines in both accuracy and long-term stability.
arXiv Detail & Related papers (2025-03-28T16:44:28Z) - Stochastic Reconstruction of Gappy Lagrangian Turbulent Signals by Conditional Diffusion Models [1.7810134788247751]
We present a method for reconstructing missing spatial and velocity data along the trajectories of small objects passively advected by turbulent flows.
Our approach makes use of conditional generative diffusion models, a recently proposed data-driven machine learning technique.
arXiv Detail & Related papers (2024-10-31T14:26:10Z) - Bayesian Circular Regression with von Mises Quasi-Processes [57.88921637944379]
In this work we explore a family of expressive and interpretable distributions over circle-valued random functions.<n>For posterior inference, we introduce a new Stratonovich-like augmentation that lends itself to fast Gibbs sampling.<n>We present experiments applying this model to the prediction of wind directions and the percentage of the running gait cycle as a function of joint angles.
arXiv Detail & Related papers (2024-06-19T01:57:21Z) - Continuous-time Riemannian SGD and SVRG Flows on Wasserstein Probabilistic Space [17.13355049019388]
We extend the gradient flow on Wasserstein space into the gradient descent (SGD) flow and variance reduction (SVRG) flow.
By leveraging the property of Wasserstein space, we construct differential equations to approximate the corresponding discrete dynamics in Euclidean space.
Our results are proven, which match the results in Euclidean space.
arXiv Detail & Related papers (2024-01-24T15:35:44Z) - Noise in the reverse process improves the approximation capabilities of
diffusion models [27.65800389807353]
In Score based Generative Modeling (SGMs), the state-of-the-art in generative modeling, reverse processes are known to perform better than their deterministic counterparts.
This paper delves into the heart of this phenomenon, comparing neural ordinary differential equations (ODEs) and neural dimension equations (SDEs) as reverse processes.
We analyze the ability of neural SDEs to approximate trajectories of the Fokker-Planck equation, revealing the advantages of neurality.
arXiv Detail & Related papers (2023-12-13T02:39:10Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
We introduce a novel class of SDE-based solvers called GMS for diffusion models.
Our solver outperforms numerous SDE-based solvers in terms of sample quality in image generation and stroke-based synthesis.
arXiv Detail & Related papers (2023-11-02T02:05:38Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Interacting Particle Langevin Algorithm for Maximum Marginal Likelihood Estimation [2.365116842280503]
We develop a class of interacting particle systems for implementing a maximum marginal likelihood estimation procedure.
In particular, we prove that the parameter marginal of the stationary measure of this diffusion has the form of a Gibbs measure.
Using a particular rescaling, we then prove geometric ergodicity of this system and bound the discretisation error.
in a manner that is uniform in time and does not increase with the number of particles.
arXiv Detail & Related papers (2023-03-23T16:50:08Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
We present a method called Manifold Interpolating Optimal-Transport Flow (MIOFlow)
MIOFlow learns, continuous population dynamics from static snapshot samples taken at sporadic timepoints.
We evaluate our method on simulated data with bifurcations and merges, as well as scRNA-seq data from embryoid body differentiation, and acute myeloid leukemia treatment.
arXiv Detail & Related papers (2022-06-29T22:19:03Z) - Riemannian Score-Based Generative Modeling [56.20669989459281]
We introduce score-based generative models (SGMs) demonstrating remarkable empirical performance.
Current SGMs make the underlying assumption that the data is supported on a Euclidean manifold with flat geometry.
This prevents the use of these models for applications in robotics, geoscience or protein modeling.
arXiv Detail & Related papers (2022-02-06T11:57:39Z) - Stochastic Normalizing Flows [52.92110730286403]
We introduce normalizing flows for maximum likelihood estimation and variational inference (VI) using differential equations (SDEs)
Using the theory of rough paths, the underlying Brownian motion is treated as a latent variable and approximated, enabling efficient training of neural SDEs.
These SDEs can be used for constructing efficient chains to sample from the underlying distribution of a given dataset.
arXiv Detail & Related papers (2020-02-21T20:47:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.