Bayesian-guided Label Mapping for Visual Reprogramming
- URL: http://arxiv.org/abs/2410.24018v1
- Date: Thu, 31 Oct 2024 15:20:43 GMT
- Title: Bayesian-guided Label Mapping for Visual Reprogramming
- Authors: Chengyi Cai, Zesheng Ye, Lei Feng, Jianzhong Qi, Feng Liu,
- Abstract summary: One-to-one mappings may overlook the complex relationship between pretrained and downstream labels.
Motivated by this observation, we propose a Bayesian-guided Label Mapping (BLM) method.
Experiments conducted on both pretrained vision models (e.g., ResNeXt) and vision-language models (e.g., CLIP) demonstrate the superior performance of BLM over existing label mapping methods.
- Score: 20.27639343292564
- License:
- Abstract: Visual reprogramming (VR) leverages the intrinsic capabilities of pretrained vision models by adapting their input or output interfaces to solve downstream tasks whose labels (i.e., downstream labels) might be totally different from the labels associated with the pretrained models (i.e., pretrained labels). When adapting the output interface, label mapping methods transform the pretrained labels to downstream labels by establishing a gradient-free one-to-one correspondence between the two sets of labels. However, in this paper, we reveal that one-to-one mappings may overlook the complex relationship between pretrained and downstream labels. Motivated by this observation, we propose a Bayesian-guided Label Mapping (BLM) method. BLM constructs an iteratively-updated probabilistic label mapping matrix, with each element quantifying a pairwise relationship between pretrained and downstream labels. The assignment of values to the constructed matrix is guided by Bayesian conditional probability, considering the joint distribution of the downstream labels and the labels predicted by the pretrained model on downstream samples. Experiments conducted on both pretrained vision models (e.g., ResNeXt) and vision-language models (e.g., CLIP) demonstrate the superior performance of BLM over existing label mapping methods. The success of BLM also offers a probabilistic lens through which to understand and analyze the effectiveness of VR. Our code is available at https://github.com/tmlr-group/BayesianLM.
Related papers
- Deep Partial Multi-Label Learning with Graph Disambiguation [27.908565535292723]
We propose a novel deep Partial multi-Label model with grAph-disambIguatioN (PLAIN)
Specifically, we introduce the instance-level and label-level similarities to recover label confidences.
At each training epoch, labels are propagated on the instance and label graphs to produce relatively accurate pseudo-labels.
arXiv Detail & Related papers (2023-05-10T04:02:08Z) - Bridging the Gap between Model Explanations in Partially Annotated
Multi-label Classification [85.76130799062379]
We study how false negative labels affect the model's explanation.
We propose to boost the attribution scores of the model trained with partial labels to make its explanation resemble that of the model trained with full labels.
arXiv Detail & Related papers (2023-04-04T14:00:59Z) - Semantic-Aware Representation Blending for Multi-Label Image Recognition
with Partial Labels [86.17081952197788]
We propose to blend category-specific representation across different images to transfer information of known labels to complement unknown labels.
Experiments on the MS-COCO, Visual Genome, Pascal VOC 2007 datasets show that the proposed SARB framework obtains superior performance over current leading competitors.
arXiv Detail & Related papers (2022-03-04T07:56:16Z) - Instance-Dependent Partial Label Learning [69.49681837908511]
Partial label learning is a typical weakly supervised learning problem.
Most existing approaches assume that the incorrect labels in each training example are randomly picked as the candidate labels.
In this paper, we consider instance-dependent and assume that each example is associated with a latent label distribution constituted by the real number of each label.
arXiv Detail & Related papers (2021-10-25T12:50:26Z) - Adaptive Label Smoothing To Regularize Large-Scale Graph Training [46.00927775402987]
We propose the adaptive label smoothing (ALS) method to replace the one-hot hard labels with smoothed ones.
ALS propagates node labels to aggregate the neighborhood label distribution in a pre-processing step, and then updates the optimal smoothed labels online to adapt to specific graph structure.
arXiv Detail & Related papers (2021-08-30T23:51:31Z) - A Theory-Driven Self-Labeling Refinement Method for Contrastive
Representation Learning [111.05365744744437]
Unsupervised contrastive learning labels crops of the same image as positives, and other image crops as negatives.
In this work, we first prove that for contrastive learning, inaccurate label assignment heavily impairs its generalization for semantic instance discrimination.
Inspired by this theory, we propose a novel self-labeling refinement approach for contrastive learning.
arXiv Detail & Related papers (2021-06-28T14:24:52Z) - Improving Pretrained Models for Zero-shot Multi-label Text
Classification through Reinforced Label Hierarchy Reasoning [18.531022315325583]
Exploiting label hierarchies has become a promising approach to tackling the zero-shot multi-label text classification problem.
We propose a Reinforced Label Hierarchy Reasoning (RLHR) approach to encourage interdependence among labels in the hierarchies during training.
arXiv Detail & Related papers (2021-04-04T19:14:09Z) - Group-aware Label Transfer for Domain Adaptive Person Re-identification [179.816105255584]
Unsupervised Adaptive Domain (UDA) person re-identification (ReID) aims at adapting the model trained on a labeled source-domain dataset to a target-domain dataset without any further annotations.
Most successful UDA-ReID approaches combine clustering-based pseudo-label prediction with representation learning and perform the two steps in an alternating fashion.
We propose a Group-aware Label Transfer (GLT) algorithm, which enables the online interaction and mutual promotion of pseudo-label prediction and representation learning.
arXiv Detail & Related papers (2021-03-23T07:57:39Z) - Label Confusion Learning to Enhance Text Classification Models [3.0251266104313643]
Label Confusion Model (LCM) learns label confusion to capture semantic overlap among labels.
LCM can generate a better label distribution to replace the original one-hot label vector.
experiments on five text classification benchmark datasets reveal the effectiveness of LCM for several widely used deep learning classification models.
arXiv Detail & Related papers (2020-12-09T11:34:35Z) - A Study on the Autoregressive and non-Autoregressive Multi-label
Learning [77.11075863067131]
We propose a self-attention based variational encoder-model to extract the label-label and label-feature dependencies jointly.
Our model can therefore be used to predict all labels in parallel while still including both label-label and label-feature dependencies.
arXiv Detail & Related papers (2020-12-03T05:41:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.