論文の概要: Detecting text level intellectual influence with knowledge graph embeddings
- arxiv url: http://arxiv.org/abs/2410.24021v1
- Date: Thu, 31 Oct 2024 15:21:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 17:02:10.616762
- Title: Detecting text level intellectual influence with knowledge graph embeddings
- Title(参考訳): 知識グラフ埋め込みによるテキストレベルの知的影響の検出
- Authors: Lucian Li, Eryclis Silva,
- Abstract要約: オープンソースジャーナル記事のコーパスを収集し,Gemini LLMを用いて知識グラフ表現を生成する。
提案手法は,前述した手法とグラフニューラルネットワークを用いた新しい埋め込みモデルを用いて,サンプル対の論文間の引用の存在を予測しようとするものである。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Introduction: Tracing the spread of ideas and the presence of influence is a question of special importance across a wide range of disciplines, ranging from intellectual history to cultural analytics, computational social science, and the science of science. Method: We collect a corpus of open source journal articles, generate Knowledge Graph representations using the Gemini LLM, and attempt to predict the existence of citations between sampled pairs of articles using previously published methods and a novel Graph Neural Network based embedding model. Results: We demonstrate that our knowledge graph embedding method is superior at distinguishing pairs of articles with and without citation. Once trained, it runs efficiently and can be fine-tuned on specific corpora to suit individual researcher needs. Conclusion(s): This experiment demonstrates that the relationships encoded in a knowledge graph, especially the types of concepts brought together by specific relations can encode information capable of revealing intellectual influence. This suggests that further work in analyzing document level knowledge graphs to understand latent structures could provide valuable insights.
- Abstract(参考訳): 序説:思想の普及と影響力の存在の追跡は、知的歴史から文化分析、計算社会科学、科学など、幅広い分野において重要な問題である。
方法:我々は,オープンソースジャーナル記事のコーパスを収集し,Gemini LLMを用いて知識グラフ表現を生成し,以前に公表された手法と新しいグラフニューラルネットワークを用いた埋め込みモデルを用いて,サンプル記事間の引用の存在を予測しようとする。
結果: 知識グラフの埋め込み手法は, 引用を伴わずとも, 記事のペアを区別する上で優れていることを示す。
トレーニングが終わったら、効率よく動作し、個々の研究者のニーズに合うように、特定のコーパスで微調整できる。
結論:本実験は,知識グラフに符号化された関係,特に,特定の関係によって得られた概念のタイプが,知的影響を明らかにすることができる情報を符号化できることを実証する。
このことは、潜在構造を理解するためにドキュメントレベルの知識グラフを分析するさらなる作業が、貴重な洞察をもたらすことを示唆している。
関連論文リスト
- Knowledge Graph Extension by Entity Type Recognition [2.8231106019727195]
本稿では,エンティティ型認識に基づく知識グラフ拡張フレームワークを提案する。
このフレームワークは、異なる知識グラフ間でスキーマとエンティティを整列させることにより、高品質な知識抽出を実現することを目的としている。
論文 参考訳(メタデータ) (2024-05-03T19:55:03Z) - Rule-Guided Joint Embedding Learning over Knowledge Graphs [6.831227021234669]
本稿では,コンテキスト情報とリテラル情報の両方を実体と関係埋め込みに組み込んだ新しいモデルを提案する。
文脈情報については,信頼度と関連度を指標として重要度を評価する。
2つの確立されたベンチマークデータセットに対して、徹底的な実験を行い、モデル性能を検証する。
論文 参考訳(メタデータ) (2023-12-01T19:58:31Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
グラフレベルの学習は、比較、回帰、分類など、多くのタスクに適用されている。
グラフの集合を学習する伝統的なアプローチは、サブストラクチャのような手作りの特徴に依存している。
ディープラーニングは、機能を自動的に抽出し、グラフを低次元表現に符号化することで、グラフレベルの学習をグラフの規模に適応させるのに役立っている。
論文 参考訳(メタデータ) (2023-01-14T09:15:49Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
本稿では,知識グラフ拡張ネットワーク(KGAN)を提案する。
KGANは感情の特徴表現を、文脈、構文、知識に基づく複数の視点から捉えている。
3つの人気のあるABSAベンチマークの実験は、我々のKGANの有効性と堅牢性を示している。
論文 参考訳(メタデータ) (2022-01-13T08:25:53Z) - CitationIE: Leveraging the Citation Graph for Scientific Information
Extraction [89.33938657493765]
引用論文と引用論文の参照リンクの引用グラフを使用する。
最先端技術に対するエンド・ツー・エンドの情報抽出の大幅な改善を観察する。
論文 参考訳(メタデータ) (2021-06-03T03:00:12Z) - GCNBoost: Artwork Classification by Label Propagation through a
Knowledge Graph [32.129005474301735]
文脈情報はしばしば、そのような現実世界のデータを構成する鍵であり、知識グラフの形で使用することを提案する。
本稿では,注釈付きデータと擬似ラベル付きデータに基づいて構築された知識グラフの新たな利用法を提案する。
ラベルの伝搬により、グラフ畳み込みネットワークを用いてモデルを訓練することにより、アートワークの分類を向上する。
論文 参考訳(メタデータ) (2021-05-25T11:50:05Z) - Edge: Enriching Knowledge Graph Embeddings with External Text [32.01476220906261]
We propose a knowledge graph enrichment and embedded framework named Edge。
元の知識グラフが与えられたら、まず、セマンティックおよび構造レベルで外部テキストを使用してリッチだがノイズの多い拡張グラフを生成する。
関連する知識を抽出し,導入した雑音を抑制するため,元のグラフと拡張グラフとの共有埋め込み空間におけるグラフアライメント項を設計する。
論文 参考訳(メタデータ) (2021-04-11T03:47:06Z) - KompaRe: A Knowledge Graph Comparative Reasoning System [85.72488258453926]
本稿では,複数の手がかりに対する共通点と矛盾点の推測を目的とした知識グラフの比較推論を提案する。
我々は,大規模な知識グラフに対して比較推論機能を提供する,最初のプロトタイプシステムであるKompaReを開発した。
論文 参考訳(メタデータ) (2020-11-06T04:57:37Z) - ENT-DESC: Entity Description Generation by Exploring Knowledge Graph [53.03778194567752]
実際には、出力記述が最も重要な知識のみをカバーするため、入力知識は十分以上である可能性がある。
我々は、KG-to-textにおけるこのような実践的なシナリオの研究を容易にするために、大規模で挑戦的なデータセットを導入する。
本稿では,元のグラフ情報をより包括的に表現できるマルチグラフ構造を提案する。
論文 参考訳(メタデータ) (2020-04-30T14:16:19Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
本稿では、知識グラフからのガイダンスを用いて、生テキスト上で学習する2つの自己教師型タスクを提案する。
エンティティレベルのマスキング言語モデルに基づいて、最初のコントリビューションはエンティティマスキングスキームです。
既存のパラダイムとは対照的に,本手法では事前学習時にのみ,知識グラフを暗黙的に使用する。
論文 参考訳(メタデータ) (2020-04-29T14:22:42Z) - Knowledge Graphs [43.06435841693428]
我々は、知識グラフに使用される様々なグラフベースのデータモデルとクエリ言語を動機付け、対比する。
本稿では,帰納的手法と帰納的手法を組み合わせた知識の表現と抽出について説明する。
我々は知識グラフの高レベルな今後の研究方向性を結論づける。
論文 参考訳(メタデータ) (2020-03-04T20:20:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。