Navigating the Unknown: A Chat-Based Collaborative Interface for Personalized Exploratory Tasks
- URL: http://arxiv.org/abs/2410.24032v1
- Date: Thu, 31 Oct 2024 15:30:55 GMT
- Title: Navigating the Unknown: A Chat-Based Collaborative Interface for Personalized Exploratory Tasks
- Authors: Yingzhe Peng, Xiaoting Qin, Zhiyang Zhang, Jue Zhang, Qingwei Lin, Xu Yang, Dongmei Zhang, Saravan Rajmohan, Qi Zhang,
- Abstract summary: This paper introduces the Collaborative Assistant for Personalized Exploration (CARE)
CARE is a system designed to enhance personalization in exploratory tasks by combining a multi-agent LLM framework with a structured user interface.
Our findings highlight CARE's potential to transform LLM-based systems from passive information retrievers to proactive partners in personalized problem-solving and exploration.
- Score: 35.09558253658275
- License:
- Abstract: The rise of large language models (LLMs) has revolutionized user interactions with knowledge-based systems, enabling chatbots to synthesize vast amounts of information and assist with complex, exploratory tasks. However, LLM-based chatbots often struggle to provide personalized support, particularly when users start with vague queries or lack sufficient contextual information. This paper introduces the Collaborative Assistant for Personalized Exploration (CARE), a system designed to enhance personalization in exploratory tasks by combining a multi-agent LLM framework with a structured user interface. CARE's interface consists of a Chat Panel, Solution Panel, and Needs Panel, enabling iterative query refinement and dynamic solution generation. The multi-agent framework collaborates to identify both explicit and implicit user needs, delivering tailored, actionable solutions. In a within-subject user study with 22 participants, CARE was consistently preferred over a baseline LLM chatbot, with users praising its ability to reduce cognitive load, inspire creativity, and provide more tailored solutions. Our findings highlight CARE's potential to transform LLM-based systems from passive information retrievers to proactive partners in personalized problem-solving and exploration.
Related papers
- Constraining Participation: Affordances of Feedback Features in Interfaces to Large Language Models [49.74265453289855]
Large language models (LLMs) are now accessible to anyone with a computer, a web browser, and an internet connection via browser-based interfaces.
This paper examines the affordances of interactive feedback features in ChatGPT's interface, analysing how they shape user input and participation in iteration.
arXiv Detail & Related papers (2024-08-27T13:50:37Z) - Hello Again! LLM-powered Personalized Agent for Long-term Dialogue [63.65128176360345]
We introduce a model-agnostic framework, the Long-term Dialogue Agent (LD-Agent)
It incorporates three independently tunable modules dedicated to event perception, persona extraction, and response generation.
The effectiveness, generality, and cross-domain capabilities of LD-Agent are empirically demonstrated.
arXiv Detail & Related papers (2024-06-09T21:58:32Z) - CoRAL: Collaborative Retrieval-Augmented Large Language Models Improve
Long-tail Recommendation [34.29410946387975]
We introduce collaborative retrieval-augmented LLMs, CoRAL, which directly incorporate collaborative evidence into prompts.
LLMs can analyze shared and distinct preferences among users, and summarize the patterns indicating which types of users would be attracted by certain items.
Our experimental results show that CoRAL can significantly improve LLMs' reasoning abilities on specific recommendation tasks.
arXiv Detail & Related papers (2024-03-11T05:49:34Z) - On the Multi-turn Instruction Following for Conversational Web Agents [83.51251174629084]
We introduce a new task of Conversational Web Navigation, which necessitates sophisticated interactions that span multiple turns with both the users and the environment.
We propose a novel framework, named self-reflective memory-augmented planning (Self-MAP), which employs memory utilization and self-reflection techniques.
arXiv Detail & Related papers (2024-02-23T02:18:12Z) - Large Language User Interfaces: Voice Interactive User Interfaces powered by LLMs [5.06113628525842]
We present a framework that can serve as an intermediary between a user and their user interface (UI)
We employ a system that stands upon textual semantic mappings of UI components, in the form of annotations.
Our engine can classify the most appropriate application, extract relevant parameters, and subsequently execute precise predictions of the user's expected actions.
arXiv Detail & Related papers (2024-02-07T21:08:49Z) - Beyond ChatBots: ExploreLLM for Structured Thoughts and Personalized
Model Responses [35.74453152447319]
ExploreLLM allows users to structure thoughts, help explore different options, navigate through the choices and recommendations, and to more easily steer models to generate more personalized responses.
We conduct a user study and show that users find it helpful to use ExploreLLM for exploratory or planning tasks, because it provides a useful schema-like structure to the task, and guides users in planning.
The study also suggests that users can more easily personalize responses with high-level preferences with ExploreLLM.
arXiv Detail & Related papers (2023-12-01T18:31:28Z) - Conversational Health Agents: A Personalized LLM-Powered Agent Framework [1.4597673707346281]
Conversational Health Agents (CHAs) are interactive systems that provide healthcare services, such as assistance and diagnosis.
We propose openCHA, an open-source framework to empower conversational agents to generate a personalized response for users' healthcare queries.
openCHA includes an orchestrator to plan and execute actions for gathering information from external sources.
arXiv Detail & Related papers (2023-10-03T18:54:10Z) - Sensecape: Enabling Multilevel Exploration and Sensemaking with Large
Language Models [12.141818433363628]
Sensecape is an interactive system designed to support complex information tasks with a large language model.
Our within-subject user study reveals that Sensecape empowers users to explore more topics and structure their knowledge hierarchically.
arXiv Detail & Related papers (2023-05-19T07:31:59Z) - Low-code LLM: Graphical User Interface over Large Language Models [115.08718239772107]
This paper introduces a novel human-LLM interaction framework, Low-code LLM.
It incorporates six types of simple low-code visual programming interactions to achieve more controllable and stable responses.
We highlight three advantages of the low-code LLM: user-friendly interaction, controllable generation, and wide applicability.
arXiv Detail & Related papers (2023-04-17T09:27:40Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
Large language models (LLMs) are able to generate human-like, fluent responses for many downstream tasks.
This paper proposes a LLM-Augmenter system, which augments a black-box LLM with a set of plug-and-play modules.
arXiv Detail & Related papers (2023-02-24T18:48:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.