Q-learning for Quantile MDPs: A Decomposition, Performance, and Convergence Analysis
- URL: http://arxiv.org/abs/2410.24128v1
- Date: Thu, 31 Oct 2024 16:53:20 GMT
- Title: Q-learning for Quantile MDPs: A Decomposition, Performance, and Convergence Analysis
- Authors: Jia Lin Hau, Erick Delage, Esther Derman, Mohammad Ghavamzadeh, Marek Petrik,
- Abstract summary: In Markov decision processes (MDPs), quantile risk measures such as Value-at-Risk are a standard metric for modeling RL agents' preferences for certain outcomes.
This paper proposes a new Q-learning algorithm for quantile optimization in MDPs with strong convergence and performance guarantees.
- Score: 30.713243690224207
- License:
- Abstract: In Markov decision processes (MDPs), quantile risk measures such as Value-at-Risk are a standard metric for modeling RL agents' preferences for certain outcomes. This paper proposes a new Q-learning algorithm for quantile optimization in MDPs with strong convergence and performance guarantees. The algorithm leverages a new, simple dynamic program (DP) decomposition for quantile MDPs. Compared with prior work, our DP decomposition requires neither known transition probabilities nor solving complex saddle point equations and serves as a suitable foundation for other model-free RL algorithms. Our numerical results in tabular domains show that our Q-learning algorithm converges to its DP variant and outperforms earlier algorithms.
Related papers
- Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [50.485788083202124]
Reinforcement Learning (RL) plays a crucial role in aligning large language models with human preferences and improving their ability to perform complex tasks.
We introduce Direct Q-function Optimization (DQO), which formulates the response generation process as a Markov Decision Process (MDP) and utilizes the soft actor-critic (SAC) framework to optimize a Q-function directly parameterized by the language model.
Experimental results on two math problem-solving datasets, GSM8K and MATH, demonstrate that DQO outperforms previous methods, establishing it as a promising offline reinforcement learning approach for aligning language models.
arXiv Detail & Related papers (2024-10-11T23:29:20Z) - On Convergence of Average-Reward Q-Learning in Weakly Communicating Markov Decision Processes [11.868402302316131]
This paper analyzes reinforcement learning (RL) algorithms for Markov decision processes (MDPs) under the average-reward criterion.
We focus on Q-learning algorithms based on relative value (RVI), which are model-free sets of the iteration RVI method for weakly communicating MDPs.
arXiv Detail & Related papers (2024-08-29T04:57:44Z) - Solving Multi-Model MDPs by Coordinate Ascent and Dynamic Programming [8.495921422521068]
Multi-model Markov decision process (MMDP) is a promising framework for computing policies.
MMDPs aim to find a policy that maximizes the expected return over a distribution of MDP models.
We propose CADP, which combines a coordinate ascent method and a dynamic programming algorithm for solving MMDPs.
arXiv Detail & Related papers (2024-07-08T18:47:59Z) - Multi-Timescale Ensemble Q-learning for Markov Decision Process Policy
Optimization [21.30645601474163]
Original Q-learning suffers from performance and complexity challenges across very large networks.
New model-free ensemble reinforcement learning algorithm which adapts the classical Q-learning is proposed to handle these challenges.
Numerical results show that the proposed algorithm can achieve up to 55% less average policy error with up to 50% less runtime complexity.
arXiv Detail & Related papers (2024-02-08T08:08:23Z) - Pointer Networks with Q-Learning for Combinatorial Optimization [55.2480439325792]
We introduce the Pointer Q-Network (PQN), a hybrid neural architecture that integrates model-free Q-value policy approximation with Pointer Networks (Ptr-Nets)
Our empirical results demonstrate the efficacy of this approach, also testing the model in unstable environments.
arXiv Detail & Related papers (2023-11-05T12:03:58Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
The sequential decision-making problem is statistically learnable if it admits a low-rank structure modeled by predictive state representations (PSRs)
This paper proposes the first known UCB-type approach for PSRs, featuring a novel bonus term that upper bounds the total variation distance between the estimated and true models.
In contrast to existing approaches for PSRs, our UCB-type algorithms enjoy computational tractability, last-iterate guaranteed near-optimal policy, and guaranteed model accuracy.
arXiv Detail & Related papers (2023-07-01T18:35:21Z) - Non-stationary Reinforcement Learning under General Function
Approximation [60.430936031067006]
We first propose a new complexity metric called dynamic Bellman Eluder (DBE) dimension for non-stationary MDPs.
Based on the proposed complexity metric, we propose a novel confidence-set based model-free algorithm called SW-OPEA.
We show that SW-OPEA is provably efficient as long as the variation budget is not significantly large.
arXiv Detail & Related papers (2023-06-01T16:19:37Z) - On Practical Robust Reinforcement Learning: Practical Uncertainty Set
and Double-Agent Algorithm [11.748284119769039]
Robust reinforcement learning (RRL) aims at seeking a robust policy to optimize the worst case performance over an uncertainty set of Markov decision processes (MDPs)
arXiv Detail & Related papers (2023-05-11T08:52:09Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
We present a new algorithm for a policy gradient in TMDPs by a simple extension of the proximal policy optimization (PPO) algorithm.
We demonstrate this on a real-world multiple-objective navigation problem with an arbitrary ordering of objectives both in simulation and on a real robot.
arXiv Detail & Related papers (2022-09-15T07:22:58Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Partial Policy Iteration for L1-Robust Markov Decision Processes [13.555107578858307]
This paper describes new efficient algorithms for solving the common class of robust MDPs.
We propose partial policy iteration, a new, efficient, flexible, and general policy iteration scheme for robust MDPs.
Our experimental results indicate that the proposed methods are many orders of magnitude faster than the state-of-the-art approach.
arXiv Detail & Related papers (2020-06-16T19:50:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.