Understanding Optimization in Deep Learning with Central Flows
- URL: http://arxiv.org/abs/2410.24206v1
- Date: Thu, 31 Oct 2024 17:58:13 GMT
- Title: Understanding Optimization in Deep Learning with Central Flows
- Authors: Jeremy M. Cohen, Alex Damian, Ameet Talwalkar, Zico Kolter, Jason D. Lee,
- Abstract summary: We show that an RMS's implicit behavior can be explicitly captured by a "central flow:" a differential equation.
We show that these flows can empirically predict long-term optimization trajectories of generic neural networks.
- Score: 53.66160508990508
- License:
- Abstract: Optimization in deep learning remains poorly understood, even in the simple setting of deterministic (i.e. full-batch) training. A key difficulty is that much of an optimizer's behavior is implicitly determined by complex oscillatory dynamics, referred to as the "edge of stability." The main contribution of this paper is to show that an optimizer's implicit behavior can be explicitly captured by a "central flow:" a differential equation which models the time-averaged optimization trajectory. We show that these flows can empirically predict long-term optimization trajectories of generic neural networks with a high degree of numerical accuracy. By interpreting these flows, we reveal for the first time 1) the precise sense in which RMSProp adapts to the local loss landscape, and 2) an "acceleration via regularization" mechanism, wherein adaptive optimizers implicitly navigate towards low-curvature regions in which they can take larger steps. This mechanism is key to the efficacy of these adaptive optimizers. Overall, we believe that central flows constitute a promising tool for reasoning about optimization in deep learning.
Related papers
- A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
We tackle the general differentiable meta learning problem that is ubiquitous in modern deep learning.
These problems are often formalized as Bi-Level optimizations (BLO)
We introduce a novel perspective by turning a given BLO problem into a ii optimization, where the inner loss function becomes a smooth distribution, and the outer loss becomes an expected loss over the inner distribution.
arXiv Detail & Related papers (2024-10-14T12:10:06Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Fine-Tuning Adaptive Stochastic Optimizers: Determining the Optimal Hyperparameter $ε$ via Gradient Magnitude Histogram Analysis [0.7366405857677226]
We introduce a new framework based on the empirical probability density function of the loss's magnitude, termed the "gradient magnitude histogram"
We propose a novel algorithm using gradient magnitude histograms to automatically estimate a refined and accurate search space for the optimal safeguard.
arXiv Detail & Related papers (2023-11-20T04:34:19Z) - Understanding Optimization of Deep Learning via Jacobian Matrix and
Lipschitz Constant [18.592094066642364]
This article provides a comprehensive understanding of optimization in deep learning.
We focus on the challenges of gradient vanishing and gradient exploding, which normally lead to diminished model representational ability and training instability, respectively.
To help understand the current optimization methodologies, we categorize them into two classes: explicit optimization and implicit optimization.
arXiv Detail & Related papers (2023-06-15T17:59:27Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Hybrid Decentralized Optimization: Leveraging Both First- and Zeroth-Order Optimizers for Faster Convergence [31.59453616577858]
We show that a distributed system can withstand noisier zeroth-order agents but can even benefit from such agents into the optimization process.
Our results hold both convex and non-zero-th order optimization objectives while they could still contribute to joint optimization tasks.
arXiv Detail & Related papers (2022-10-14T10:54:11Z) - Moment Centralization based Gradient Descent Optimizers for
Convolutional Neural Networks [12.90962626557934]
Conal neural networks (CNNs) have shown very appealing performance for many computer vision applications.
In this paper, we propose a moment centralization-based SGD datasets for CNNs.
The proposed moment centralization is generic in nature and can be integrated with any of the existing adaptive momentum-baseds.
arXiv Detail & Related papers (2022-07-19T04:38:01Z) - The Implicit Bias for Adaptive Optimization Algorithms on Homogeneous
Neural Networks [21.63353575405414]
We study the implicit bias of adaptive optimization algorithms on homogeneous neural networks.
It is the first work to study the convergent direction of adaptive optimizations on non-linear deep neural networks.
arXiv Detail & Related papers (2020-12-11T11:15:32Z) - Self-Tuning Stochastic Optimization with Curvature-Aware Gradient
Filtering [53.523517926927894]
We explore the use of exact per-sample Hessian-vector products and gradients to construct self-tuning quadratics.
We prove that our model-based procedure converges in noisy gradient setting.
This is an interesting step for constructing self-tuning quadratics.
arXiv Detail & Related papers (2020-11-09T22:07:30Z) - Fast Rates for Contextual Linear Optimization [52.39202699484225]
We show that a naive plug-in approach achieves regret convergence rates that are significantly faster than methods that directly optimize downstream decision performance.
Our results are overall positive for practice: predictive models are easy and fast to train using existing tools, simple to interpret, and, as we show, lead to decisions that perform very well.
arXiv Detail & Related papers (2020-11-05T18:43:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.