Revisiting the Initial Steps in Adaptive Gradient Descent Optimization
- URL: http://arxiv.org/abs/2412.02153v2
- Date: Tue, 11 Feb 2025 16:23:39 GMT
- Title: Revisiting the Initial Steps in Adaptive Gradient Descent Optimization
- Authors: Abulikemu Abuduweili, Changliu Liu,
- Abstract summary: Adaptive gradient optimization methods, such as Adam, are prevalent in training deep neural networks across diverse machine learning tasks.
These methods often suffer from suboptimal generalization compared to descent gradient (SGD) and exhibit instability.
We introduce simple yet effective solutions: initializing the second-order moment estimation with non-zero values.
- Score: 6.468625143772815
- License:
- Abstract: Adaptive gradient optimization methods, such as Adam, are prevalent in training deep neural networks across diverse machine learning tasks due to their ability to achieve faster convergence. However, these methods often suffer from suboptimal generalization compared to stochastic gradient descent (SGD) and exhibit instability, particularly when training Transformer models. In this work, we show the standard initialization of the second-order moment estimation ($v_0 =0$) as a significant factor contributing to these limitations. We introduce simple yet effective solutions: initializing the second-order moment estimation with non-zero values, using either data-driven or random initialization strategies. Empirical evaluations demonstrate that our approach not only stabilizes convergence but also enhances the final performance of adaptive gradient optimizers. Furthermore, by adopting the proposed initialization strategies, Adam achieves performance comparable to many recently proposed variants of adaptive gradient optimization methods. Our code is available at https://github.com/Walleclipse/Adam_Initialization.
Related papers
- ELRA: Exponential learning rate adaption gradient descent optimization
method [83.88591755871734]
We present a novel, fast (exponential rate), ab initio (hyper-free) gradient based adaption.
The main idea of the method is to adapt the $alpha by situational awareness.
It can be applied to problems of any dimensions n and scales only linearly.
arXiv Detail & Related papers (2023-09-12T14:36:13Z) - A Control Theoretic Framework for Adaptive Gradient Optimizers in
Machine Learning [0.6526824510982802]
Adaptive gradient methods have become popular in optimizing deep neural networks.
Recent examples include AdaGrad and Adam.
We develop a generic framework for adaptive gradient methods.
arXiv Detail & Related papers (2022-06-04T17:55:33Z) - Local Quadratic Convergence of Stochastic Gradient Descent with Adaptive
Step Size [29.15132344744801]
We establish local convergence for gradient descent with adaptive step size for problems such as matrix inversion.
We show that these first order optimization methods can achieve sub-linear or linear convergence.
arXiv Detail & Related papers (2021-12-30T00:50:30Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - Adaptive Gradient Methods for Constrained Convex Optimization and
Variational Inequalities [32.51470158863247]
Main algorithms AdaACSA and AdaAGD+ are accelerated methods for constrained convex optimization.
We complement them with a simpler algorithm AdaGrad+ which enjoys the same features, and achieves the standard non-accelerated convergence rate.
arXiv Detail & Related papers (2020-07-17T09:10:21Z) - MaxVA: Fast Adaptation of Step Sizes by Maximizing Observed Variance of
Gradients [112.00379151834242]
We propose adaptive learning rate principle, in which the running mean of squared gradient in Adam is replaced by a weighted mean, with weights chosen to maximize the estimated variance each coordinate.
This results in faster adaptation, which leads more desirable empirical convergence behaviors.
arXiv Detail & Related papers (2020-06-21T21:47:43Z) - A Primer on Zeroth-Order Optimization in Signal Processing and Machine
Learning [95.85269649177336]
ZO optimization iteratively performs three major steps: gradient estimation, descent direction, and solution update.
We demonstrate promising applications of ZO optimization, such as evaluating and generating explanations from black-box deep learning models, and efficient online sensor management.
arXiv Detail & Related papers (2020-06-11T06:50:35Z) - Adaptive First-and Zeroth-order Methods for Weakly Convex Stochastic
Optimization Problems [12.010310883787911]
We analyze a new family of adaptive subgradient methods for solving an important class of weakly convex (possibly nonsmooth) optimization problems.
Experimental results indicate how the proposed algorithms empirically outperform its zerothorder gradient descent and its design variant.
arXiv Detail & Related papers (2020-05-19T07:44:52Z) - Proximal Gradient Algorithm with Momentum and Flexible Parameter Restart
for Nonconvex Optimization [73.38702974136102]
Various types of parameter restart schemes have been proposed for accelerated algorithms to facilitate their practical convergence in rates.
In this paper, we propose an algorithm for solving nonsmooth problems.
arXiv Detail & Related papers (2020-02-26T16:06:27Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
Adaptive algorithms perform gradient updates using the history of gradients and are ubiquitous in training deep neural networks.
In this paper we analyze a variant of OptimisticOA algorithm for nonconcave minmax problems.
Our experiments show that adaptive GAN non-adaptive gradient algorithms can be observed empirically.
arXiv Detail & Related papers (2019-12-26T22:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.