論文の概要: NeuroSym-BioCAT: Leveraging Neuro-Symbolic Methods for Biomedical Scholarly Document Categorization and Question Answering
- arxiv url: http://arxiv.org/abs/2411.00041v1
- Date: Tue, 29 Oct 2024 14:45:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 21:28:23.369485
- Title: NeuroSym-BioCAT: Leveraging Neuro-Symbolic Methods for Biomedical Scholarly Document Categorization and Question Answering
- Title(参考訳): NeuroSym-BioCAT: バイオメディカル書誌分類と質問応答の活用
- Authors: Parvez Zamil, Gollam Rabby, Md. Sadekur Rahman, Sören Auer,
- Abstract要約: 本稿では,最適化されたトピックモデリングフレームワークであるOVB-LDAとBI-POP CMA-ES最適化技術を統合し,学術文書の抽象分類を強化した新しい手法を提案する。
我々は、ドメイン固有データに基づいて微調整された蒸留MiniLMモデルを用いて、高精度な回答抽出を行う。
- 参考スコア(独自算出の注目度): 0.14999444543328289
- License:
- Abstract: The growing volume of biomedical scholarly document abstracts presents an increasing challenge in efficiently retrieving accurate and relevant information. To address this, we introduce a novel approach that integrates an optimized topic modelling framework, OVB-LDA, with the BI-POP CMA-ES optimization technique for enhanced scholarly document abstract categorization. Complementing this, we employ the distilled MiniLM model, fine-tuned on domain-specific data, for high-precision answer extraction. Our approach is evaluated across three configurations: scholarly document abstract retrieval, gold-standard scholarly documents abstract, and gold-standard snippets, consistently outperforming established methods such as RYGH and bio-answer finder. Notably, we demonstrate that extracting answers from scholarly documents abstracts alone can yield high accuracy, underscoring the sufficiency of abstracts for many biomedical queries. Despite its compact size, MiniLM exhibits competitive performance, challenging the prevailing notion that only large, resource-intensive models can handle such complex tasks. Our results, validated across various question types and evaluation batches, highlight the robustness and adaptability of our method in real-world biomedical applications. While our approach shows promise, we identify challenges in handling complex list-type questions and inconsistencies in evaluation metrics. Future work will focus on refining the topic model with more extensive domain-specific datasets, further optimizing MiniLM and utilizing large language models (LLM) to improve both precision and efficiency in biomedical question answering.
- Abstract(参考訳): 生物医学的な学術文献の要約が増えていることは、正確で関連する情報を効率的に検索する上での課題が増えていることを示している。
そこで本稿では,BI-POP CMA-ES最適化手法とOVB-LDAという最適化されたトピックモデリングフレームワークを統合した新しい手法を提案する。
これを補完するために,ドメイン固有データに基づいて微調整された蒸留ミニLMモデルを用いて,高精度な回答抽出を行う。
本手法は, 学術文献の要約検索, 金標準学術文書の要約, 金標準スニペットの3つの構成で評価され, RYGHやバイオアンサーファインダなどの確立された手法を一貫して上回っている。
特に,学術文献から単独で回答を抽出することで,多くのバイオメディカルクエリにおいて,要約が十分であることを示すことによって,高い精度が得られることを示す。
コンパクトなサイズにもかかわらず、MiniLMは競争性能を示し、大規模なリソース集約モデルだけがそのような複雑なタスクを処理できるという一般的な概念に挑戦する。
本研究の結果は,様々な質問タイプや評価バッチにまたがって検証され,実世界のバイオメディカル応用における本手法の堅牢性と適応性を強調した。
提案手法は将来性を示すが,評価指標の複雑なリスト型質問や不整合に対処する上での課題を明らかにする。
今後は、より広範なドメイン固有のデータセットでトピックモデルを洗練し、MiniLMを最適化し、大規模言語モデル(LLM)を使用して、バイオメディカルな質問応答の精度と効率を改善することに注力する。
関連論文リスト
- SeRTS: Self-Rewarding Tree Search for Biomedical Retrieval-Augmented Generation [50.26966969163348]
大規模言語モデル(LLM)は,検索増強世代(RAG)の進展に伴い,生物医学領域において大きな可能性を示した。
既存の検索強化アプローチは、様々なクエリやドキュメント、特に医療知識クエリに対処する上で、課題に直面している。
モンテカルロ木探索(MCTS)と自己回帰パラダイムに基づく自己回帰木探索(SeRTS)を提案する。
論文 参考訳(メタデータ) (2024-06-17T06:48:31Z) - BiomedRAG: A Retrieval Augmented Large Language Model for Biomedicine [19.861178160437827]
大規模言語モデル(LLM)は、バイオメディカルおよび医療分野における様々な応用のための重要なリソースとして急速に現れてきた。
textscBiomedRAGは5つのバイオメディカルNLPタスクで優れたパフォーマンスを実現している。
textscBiomedRAG は、GIT と ChemProt コーパスにおいて、マイクロF1スコアが 81.42 と 88.83 の他のトリプル抽出システムより優れている。
論文 参考訳(メタデータ) (2024-05-01T12:01:39Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
オープンソースの小型マルチモーダルモデル(SMM)を訓練し、放射線学における未測定臨床ニーズに対する能力ギャップを埋める。
トレーニングのために,697万以上の画像テキストペアからなる大規模なデータセットを組み立てる。
評価のために,GPT-4に基づく実測値CheXpromptを提案する。
LlaVA-Radの推論は高速で、単一のV100 GPU上でプライベート設定で実行できる。
論文 参考訳(メタデータ) (2024-03-12T18:12:02Z) - An Evaluation of Large Language Models in Bioinformatics Research [52.100233156012756]
本研究では,大規模言語モデル(LLM)の性能について,バイオインフォマティクスの幅広い課題について検討する。
これらのタスクには、潜在的なコーディング領域の同定、遺伝子とタンパク質の命名されたエンティティの抽出、抗微生物および抗がんペプチドの検出、分子最適化、教育生物情報学問題の解決が含まれる。
以上の結果から, GPT 変種のような LLM がこれらのタスクの多くをうまく処理できることが示唆された。
論文 参考訳(メタデータ) (2024-02-21T11:27:31Z) - Graph-Based Retriever Captures the Long Tail of Biomedical Knowledge [2.2814097119704058]
大規模言語モデル(LLM)は、膨大な知識を要約して提示することで、情報の検索方法を変えつつある。
LLMはトレーニングセットから最も頻繁に見られる情報を強調し、まれな情報を無視する傾向があります。
本稿では,これらのクラスタをダウンサンプリングし,情報過負荷問題を緩和するために知識グラフを活用する新しい情報検索手法を提案する。
論文 参考訳(メタデータ) (2024-02-19T18:31:11Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
我々は、軽量なアダプターモジュールを用いて、構造化された生体医学的知識を事前訓練された言語モデルに注入するアプローチを開発した。
バイオメディカル知識システムUMLSと新しいバイオケミカルOntoChemの2つの大きなKGと、PubMedBERTとBioLinkBERTの2つの著名なバイオメディカルPLMを使用している。
計算能力の要件を低く保ちながら,本手法がいくつかの事例において性能改善につながることを示す。
論文 参考訳(メタデータ) (2023-12-21T14:26:57Z) - High-throughput Biomedical Relation Extraction for Semi-Structured Web Articles Empowered by Large Language Models [1.9665865095034865]
関係抽出タスクを大言語モデルのバイナリ分類として定式化する。
メインタイトルをテールエンティティとして指定し、コンテキストに明示的に組み込む。
長い内容はテキストチャンクにスライスされ、埋め込みされ、追加の埋め込みモデルで検索される。
論文 参考訳(メタデータ) (2023-12-13T16:43:41Z) - BiomedGPT: A Generalist Vision-Language Foundation Model for Diverse Biomedical Tasks [68.39821375903591]
汎用AIは、さまざまなデータ型を解釈する汎用性のために、制限に対処する可能性を秘めている。
本稿では,最初のオープンソースかつ軽量な視覚言語基盤モデルであるBiomedGPTを提案する。
論文 参考訳(メタデータ) (2023-05-26T17:14:43Z) - A systematic evaluation of large language models for biomedical natural language processing: benchmarks, baselines, and recommendations [22.668383945059762]
そこで本研究では,12個のBioNLPデータセットにまたがる4つの代表言語モデル(LLM)を体系的に評価する。
評価は、ゼロショット、静的少数ショット、動的Kアネレスト、微調整の4つの設定で行われる。
これらのモデルと最先端(SOTA)アプローチを比較し、細い(ドメイン固有の)BERTモデルやBARTモデルと比較する。
論文 参考訳(メタデータ) (2023-05-10T13:40:06Z) - BioIE: Biomedical Information Extraction with Multi-head Attention
Enhanced Graph Convolutional Network [9.227487525657901]
本稿では,バイオメディカルテキストと非構造化医療報告から関係を抽出するハイブリッドニューラルネットワークであるバイオメディカル情報抽出を提案する。
本研究は,2つの主要な生医学的関係抽出タスク,化学物質とタンパク質の相互作用,およびクロスホスピタル・パン・カンノロジー報告コーパスについて検討した。
論文 参考訳(メタデータ) (2021-10-26T13:19:28Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。