eDOC: Explainable Decoding Out-of-domain Cell Types with Evidential Learning
- URL: http://arxiv.org/abs/2411.00054v1
- Date: Wed, 30 Oct 2024 20:15:36 GMT
- Title: eDOC: Explainable Decoding Out-of-domain Cell Types with Evidential Learning
- Authors: Chaochen Wu, Meiyun Zuo, Lei Xie,
- Abstract summary: Single-cell RNA-seq (scRNA-seq) technology is a powerful tool for unraveling the complexity of biological systems.
Cell Type CTA (CTA) is one of essential and fundamental tasks in scRNA-seq data analysis.
We develop a new method, eDOC, to address aforementioned challenges.
- Score: 7.036161839497915
- License:
- Abstract: Single-cell RNA-seq (scRNA-seq) technology is a powerful tool for unraveling the complexity of biological systems. One of essential and fundamental tasks in scRNA-seq data analysis is Cell Type Annotation (CTA). In spite of tremendous efforts in developing machine learning methods for this problem, several challenges remains. They include identifying Out-of-Domain (OOD) cell types, quantifying the uncertainty of unseen cell type annotations, and determining interpretable cell type-specific gene drivers for an OOD case. OOD cell types are often associated with therapeutic responses and disease origins, making them critical for precision medicine and early disease diagnosis. Additionally, scRNA-seq data contains tens thousands of gene expressions. Pinpointing gene drivers underlying CTA can provide deep insight into gene regulatory mechanisms and serve as disease biomarkers. In this study, we develop a new method, eDOC, to address aforementioned challenges. eDOC leverages a transformer architecture with evidential learning to annotate In-Domain (IND) and OOD cell types as well as to highlight genes that contribute both IND cells and OOD cells in a single cell resolution. Rigorous experiments demonstrate that eDOC significantly improves the efficiency and effectiveness of OOD cell type and gene driver identification compared to other state-of-the-art methods. Our findings suggest that eDOC may provide new insights into single-cell biology.
Related papers
- Gene Regulatory Network Inference from Pre-trained Single-Cell Transcriptomics Transformer with Joint Graph Learning [10.44434676119443]
Inferring gene regulatory networks (GRNs) from single-cell RNA sequencing (scRNA-seq) data is a complex challenge.
In this study, we tackle this challenge by leveraging the single-cell BERT-based pre-trained transformer model (scBERT)
We introduce a novel joint graph learning approach that combines the rich contextual representations learned by single-cell language models with the structured knowledge encoded in GRNs.
arXiv Detail & Related papers (2024-07-25T16:42:08Z) - CRISPR-GPT: An LLM Agent for Automated Design of Gene-Editing Experiments [51.41735920759667]
Large Language Models (LLMs) have shown promise in various tasks, but they often lack specific knowledge and struggle to accurately solve biological design problems.
In this work, we introduce CRISPR-GPT, an LLM agent augmented with domain knowledge and external tools to automate and enhance the design process of CRISPR-based gene-editing experiments.
arXiv Detail & Related papers (2024-04-27T22:59:17Z) - scBiGNN: Bilevel Graph Representation Learning for Cell Type
Classification from Single-cell RNA Sequencing Data [62.87454293046843]
Graph neural networks (GNNs) have been widely used for automatic cell type classification.
scBiGNN comprises two GNN modules to identify cell types.
scBiGNN outperforms a variety of existing methods for cell type classification from scRNA-seq data.
arXiv Detail & Related papers (2023-12-16T03:54:26Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - Causal machine learning for single-cell genomics [94.28105176231739]
We discuss the application of machine learning techniques to single-cell genomics and their challenges.
We first present the model that underlies most of current causal approaches to single-cell biology.
We then identify open problems in the application of causal approaches to single-cell data.
arXiv Detail & Related papers (2023-10-23T13:35:24Z) - Machine Learning Methods for Cancer Classification Using Gene Expression
Data: A Review [77.34726150561087]
Cancer is the second major cause of death after cardiovascular diseases.
Gene expression can play a fundamental role in the early detection of cancer.
This study reviews recent progress in gene expression analysis for cancer classification using machine learning methods.
arXiv Detail & Related papers (2023-01-28T15:03:03Z) - N-ACT: An Interpretable Deep Learning Model for Automatic Cell Type and
Salient Gene Identification [0.0]
A major limitation in most scRNAseq analysis pipelines is the reliance on manual annotations to determine cell identities.
N-ACT is the first-of-its-kind interpretable deep neural network for ACTI utilizing neural-attention to detect salient genes for use in cell-type identification.
arXiv Detail & Related papers (2022-05-08T18:13:28Z) - Multi-modal Self-supervised Pre-training for Regulatory Genome Across
Cell Types [75.65676405302105]
We propose a simple yet effective approach for pre-training genome data in a multi-modal and self-supervised manner, which we call GeneBERT.
We pre-train our model on the ATAC-seq dataset with 17 million genome sequences.
arXiv Detail & Related papers (2021-10-11T12:48:44Z) - Active feature selection discovers minimal gene-sets for classifying
cell-types and disease states in single-cell mRNA-seq data [2.578242050187029]
Single cell mRNA-seq costs currently prohibit the application of single cell mRNA-seq for many biological and clinical tasks of interest.
We introduce an active learning framework that constructs compressed gene sets that enable high accuracy classification of cell-types and physiological states.
The discovery of compact but highly informative gene sets might enable drastic reductions in sequencing requirements for applications of single-cell mRNA-seq.
arXiv Detail & Related papers (2021-06-15T17:49:26Z) - A Cross-Level Information Transmission Network for Predicting Phenotype
from New Genotype: Application to Cancer Precision Medicine [37.442717660492384]
We propose a novel Cross-LEvel Information Transmission network (CLEIT) framework.
Inspired by domain adaptation, CLEIT first learns the latent representation of high-level domain then uses it as ground-truth embedding.
We demonstrate the effectiveness and performance boost of CLEIT in predicting anti-cancer drug sensitivity from somatic mutations.
arXiv Detail & Related papers (2020-10-09T22:01:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.