CRISPR-GPT: An LLM Agent for Automated Design of Gene-Editing Experiments
- URL: http://arxiv.org/abs/2404.18021v1
- Date: Sat, 27 Apr 2024 22:59:17 GMT
- Title: CRISPR-GPT: An LLM Agent for Automated Design of Gene-Editing Experiments
- Authors: Kaixuan Huang, Yuanhao Qu, Henry Cousins, William A. Johnson, Di Yin, Mihir Shah, Denny Zhou, Russ Altman, Mengdi Wang, Le Cong,
- Abstract summary: Large Language Models (LLMs) have shown promise in various tasks, but they often lack specific knowledge and struggle to accurately solve biological design problems.
In this work, we introduce CRISPR-GPT, an LLM agent augmented with domain knowledge and external tools to automate and enhance the design process of CRISPR-based gene-editing experiments.
- Score: 51.41735920759667
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The introduction of genome engineering technology has transformed biomedical research, making it possible to make precise changes to genetic information. However, creating an efficient gene-editing system requires a deep understanding of CRISPR technology, and the complex experimental systems under investigation. While Large Language Models (LLMs) have shown promise in various tasks, they often lack specific knowledge and struggle to accurately solve biological design problems. In this work, we introduce CRISPR-GPT, an LLM agent augmented with domain knowledge and external tools to automate and enhance the design process of CRISPR-based gene-editing experiments. CRISPR-GPT leverages the reasoning ability of LLMs to facilitate the process of selecting CRISPR systems, designing guide RNAs, recommending cellular delivery methods, drafting protocols, and designing validation experiments to confirm editing outcomes. We showcase the potential of CRISPR-GPT for assisting non-expert researchers with gene-editing experiments from scratch and validate the agent's effectiveness in a real-world use case. Furthermore, we explore the ethical and regulatory considerations associated with automated gene-editing design, highlighting the need for responsible and transparent use of these tools. Our work aims to bridge the gap between beginner biological researchers and CRISPR genome engineering techniques, and demonstrate the potential of LLM agents in facilitating complex biological discovery tasks.
Related papers
- Active learning for efficient discovery of optimal gene combinations in the combinatorial perturbation space [13.409130886920579]
NAIAD is an active learning framework that efficiently discovers optimal gene pairs.
evaluated on four CRISPR perturbation datasets totaling over 350,000 genetic interactions.
Our framework improves the identification of novel, effective gene combinations, enabling more efficient CRISPR library design.
arXiv Detail & Related papers (2024-11-18T19:49:51Z) - Large Language Models in Drug Discovery and Development: From Disease Mechanisms to Clinical Trials [49.19897427783105]
The integration of Large Language Models (LLMs) into the drug discovery and development field marks a significant paradigm shift.
We investigate how these advanced computational models can uncover target-disease linkage, interpret complex biomedical data, enhance drug molecule design, predict drug efficacy and safety profiles, and facilitate clinical trial processes.
arXiv Detail & Related papers (2024-09-06T02:03:38Z) - Weakly Supervised Set-Consistency Learning Improves Morphological Profiling of Single-Cell Images [0.6491172192043603]
We propose a set-level consistency learning algorithm, Set-DINO, to improve learned representations of perturbation effects in single-cell images.
We conduct experiments on a large-scale Optical Pooled Screening dataset with more than 5000 genetic perturbations.
arXiv Detail & Related papers (2024-06-08T00:53:30Z) - BioDiscoveryAgent: An AI Agent for Designing Genetic Perturbation Experiments [112.25067497985447]
We introduce BioDiscoveryAgent, an agent that designs new experiments, reasons about their outcomes, and efficiently navigates the hypothesis space to reach desired solutions.
BioDiscoveryAgent can uniquely design new experiments without the need to train a machine learning model.
It achieves an average of 21% improvement in predicting relevant genetic perturbations across six datasets.
arXiv Detail & Related papers (2024-05-27T19:57:17Z) - Empowering Biomedical Discovery with AI Agents [15.125735219811268]
We envision "AI scientists" as systems capable of skeptical learning and reasoning.
Biomedical AI agents combine human creativity and expertise with AI's ability to analyze large datasets.
AI agents can impact areas ranging from virtual cell simulation, programmable control of phenotypes, and the design of cellular circuits to developing new therapies.
arXiv Detail & Related papers (2024-04-03T16:08:01Z) - CRISPR: Ensemble Model [20.268713698436326]
We propose a novel ensemble learning method for sgRNA design that is accurate and generalizable.
Our results suggest that our method can be used to design sgRNAs with high sensitivity and specificity, even for new genes or cells.
arXiv Detail & Related papers (2024-03-05T14:55:14Z) - An Evaluation of Large Language Models in Bioinformatics Research [52.100233156012756]
We study the performance of large language models (LLMs) on a wide spectrum of crucial bioinformatics tasks.
These tasks include the identification of potential coding regions, extraction of named entities for genes and proteins, detection of antimicrobial and anti-cancer peptides, molecular optimization, and resolution of educational bioinformatics problems.
Our findings indicate that, given appropriate prompts, LLMs like GPT variants can successfully handle most of these tasks.
arXiv Detail & Related papers (2024-02-21T11:27:31Z) - Toward a Team of AI-made Scientists for Scientific Discovery from Gene
Expression Data [9.767546641019862]
We introduce a novel framework, a Team of AI-made Scientists (TAIS), designed to streamline the scientific discovery pipeline.
TAIS comprises simulated roles, including a project manager, data engineer, and domain expert, each represented by a Large Language Model (LLM)
These roles collaborate to replicate the tasks typically performed by data scientists, with a specific focus on identifying disease-predictive genes.
arXiv Detail & Related papers (2024-02-15T06:30:12Z) - Machine learning in bioprocess development: From promise to practice [58.720142291102135]
Data-driven methods like machine learning (ML) approaches have a high potential to rationally explore large design spaces.
The aim of this review is to demonstrate how ML methods have been applied so far in bioprocess development.
arXiv Detail & Related papers (2022-10-04T13:48:59Z) - Machine Learning Applications for Therapeutic Tasks with Genomics Data [49.98249191161107]
We review the literature on machine learning applications for genomics through the lens of therapeutic development.
We identify twenty-two machine learning in genomics applications across the entire therapeutics pipeline.
We pinpoint seven important challenges in this field with opportunities for expansion and impact.
arXiv Detail & Related papers (2021-05-03T21:20:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.