論文の概要: Generating Diverse Negations from Affirmative Sentences
- arxiv url: http://arxiv.org/abs/2411.00056v1
- Date: Wed, 30 Oct 2024 21:25:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:50:32.330059
- Title: Generating Diverse Negations from Affirmative Sentences
- Title(参考訳): 肯定的文から多元的否定を生成する
- Authors: Darian Rodriguez Vasquez, Afroditi Papadaki,
- Abstract要約: 否定は、動詞句、節、その他の表現において負の極性を符号化する現実世界の応用において重要である。
多様な否定型を生成することにより,否定データセットの欠如に対処する手法であるNegVerseを提案する。
我々は,構文構造に基づいて,否定が最も起こりやすい文の一部をマスキングするための新しい規則を提案する。
また, 否定の手がかりを同定し, 退化例を除去し, 多様な有意義な摂動を生じさせるフィルタリング機構を提案する。
- 参考スコア(独自算出の注目度): 0.999726509256195
- License:
- Abstract: Despite the impressive performance of large language models across various tasks, they often struggle with reasoning under negated statements. Negations are important in real-world applications as they encode negative polarity in verb phrases, clauses, or other expressions. Nevertheless, they are underrepresented in current benchmarks, which mainly include basic negation forms and overlook more complex ones, resulting in insufficient data for training a language model. In this work, we propose NegVerse, a method that tackles the lack of negation datasets by producing a diverse range of negation types from affirmative sentences, including verbal, non-verbal, and affixal forms commonly found in English text. We provide new rules for masking parts of sentences where negations are most likely to occur, based on syntactic structure and use a frozen baseline LLM and prompt tuning to generate negated sentences. We also propose a filtering mechanism to identify negation cues and remove degenerate examples, producing a diverse range of meaningful perturbations. Our results show that NegVerse outperforms existing methods and generates negations with higher lexical similarity to the original sentences, better syntactic preservation and negation diversity. The code is available in https://github.com/DarianRodriguez/NegVerse
- Abstract(参考訳): 様々なタスクにわたる大きな言語モデルの印象的なパフォーマンスにもかかわらず、彼らはしばしば否定された文の推論に苦労する。
否定は、動詞句、節、その他の表現において負の極性を符号化する現実世界の応用において重要である。
それにもかかわらず、それらは主に基本的な否定形式を含み、より複雑なものを見落とし、言語モデルを訓練するのに不十分なデータをもたらす、現在のベンチマークでは表現されていない。
本研究では,言語,非言語,および接尾辞形式を含む肯定文から多種多様な否定型を生成することによって,否定データセットの欠如に対処する手法であるNegVerseを提案する。
我々は,構文構造に基づいて,否定が発生する可能性が最も高い文の一部をマスキングするための新しいルールを提案し,凍結ベースラインLLMを用いて,否定文を生成する。
また, 否定の手がかりを同定し, 退化例を除去し, 多様な有意義な摂動を生じさせるフィルタリング機構を提案する。
以上の結果から,NegVerseは既存の手法よりも優れ,語彙的類似度が高く,構文的保存性や否定の多様性が向上していることがわかった。
コードはhttps://github.com/DarianRodriguez/NegVerseで入手できる。
関連論文リスト
- Paraphrasing in Affirmative Terms Improves Negation Understanding [9.818585902859363]
否定は共通の言語現象である。
本研究では,否定を伴う推論を必要とする大規模コーパスであるCondaQAの改良と5つの自然言語理解タスクを示す。
論文 参考訳(メタデータ) (2024-06-11T17:30:03Z) - Revisiting subword tokenization: A case study on affixal negation in large language models [57.75279238091522]
現代英語大言語モデル(LLM)に対する接尾辞否定の影響を計測する。
我々は、異なるサブワードトークン化手法を用いてLLMを用いて実験を行う。
モデルは全体として、接尾辞の意味を確実に認識できることを示す。
論文 参考訳(メタデータ) (2024-04-03T03:14:27Z) - Generating Enhanced Negatives for Training Language-Based Object Detectors [86.1914216335631]
我々は、現代の生成モデルに組み込まれた膨大な知識を活用して、元のデータにより関連性のある負を自動で構築することを提案する。
具体的には、大言語モデルを用いて、負のテキスト記述を生成するとともに、テキスト間拡散モデルを用いて、対応する負の画像を生成する。
実験により, 生成した負データとの関連性を確認し, 言語ベースの検出器での使用により, 2つの複雑なベンチマークの性能が向上した。
論文 参考訳(メタデータ) (2023-12-29T23:04:00Z) - This is not a Dataset: A Large Negation Benchmark to Challenge Large
Language Models [4.017326849033009]
我々は,否定を理解する大規模言語モデルの最適部分性能の理由を明らかにする。
我々は,コモンセンス知識に関する40万前後の記述文を半自動生成する大規模データセットを提案する。
我々は,その一般化と推論能力を把握するために,ゼロショットアプローチで利用可能な最大オープンLCMを用いてデータセットを構築した。
論文 参考訳(メタデータ) (2023-10-24T15:38:21Z) - Can large language models generate salient negative statements? [18.577880767789097]
本研究では,大規模言語モデルによる実世界の実体に関する健全な(興味深い)ネガティブなステートメントを生成する能力について検討する。
我々はゼロショットとkショットの制約のないプローブを用いてLSMを探索し、従来の否定生成法と比較した。
異なる領域の被写体に関する生成したリストの正しさと正当性を測定する。
論文 参考訳(メタデータ) (2023-05-26T09:13:59Z) - Not another Negation Benchmark: The NaN-NLI Test Suite for Sub-clausal
Negation [59.307534363825816]
否定は現在の言語モデルでは不十分だが、この問題の範囲は広く理解されていない。
自然言語推論(NLI)テストスイートを導入し,NLP手法の能力を検証した。
論文 参考訳(メタデータ) (2022-10-06T23:39:01Z) - Improving negation detection with negation-focused pre-training [58.32362243122714]
否定は共通の言語的特徴であり、多くの言語理解タスクにおいて不可欠である。
最近の研究で、最先端のNLPモデルは否定を含むサンプルで性能が低いことが示されている。
本稿では,データ拡張と否定マスキングを対象とする,否定に焦点をあてた新たな事前学習戦略を提案する。
論文 参考訳(メタデータ) (2022-05-09T02:41:11Z) - Debiased Contrastive Learning of Unsupervised Sentence Representations [88.58117410398759]
コントラスト学習は、事前訓練された言語モデル(PLM)を改善し、高品質な文表現を導き出すのに有効である。
以前の作業は、主にランダムにトレーニングデータからバッチ内陰性またはサンプルを採用する。
我々はこれらの不適切な負の影響を軽減するための新しいフレームワーク textbfDCLR を提案する。
論文 参考訳(メタデータ) (2022-05-02T05:07:43Z) - Composing Conversational Negation [0.0]
文の否定を捉えるために単一の単語の否定を構成する。
また,文中に意味が進化する単語の否定をモデル化する方法についても述べる。
論文 参考訳(メタデータ) (2021-07-14T16:24:41Z) - Understanding by Understanding Not: Modeling Negation in Language Models [81.21351681735973]
否定は自然言語の中核構造である。
本稿では,否定された総称文に基づく不一致目的を用いて,言語モデリング目標の強化を提案する。
否定されたLAMAデータセットの平均top1エラー率を4%に削減します。
論文 参考訳(メタデータ) (2021-05-07T21:58:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。