論文の概要: Learning local discrete features in explainable-by-design convolutional neural networks
- arxiv url: http://arxiv.org/abs/2411.00139v1
- Date: Thu, 31 Oct 2024 18:39:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:47:35.663227
- Title: Learning local discrete features in explainable-by-design convolutional neural networks
- Title(参考訳): 説明可能な設計による畳み込みニューラルネットワークにおける局所的な離散的特徴の学習
- Authors: Pantelis I. Kaplanoglou, Konstantinos Diamantaras,
- Abstract要約: 本稿では,側方抑制機構に基づくCNN(Design-by-Design Convolutional Neural Network)を提案する。
このモデルは、残留または高密度のスキップ接続を持つ高精度CNNである予測器で構成されている。
観測を収集し,直接確率を計算することにより,隣接するレベルのモチーフ間の因果関係を説明することができる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Our proposed framework attempts to break the trade-off between performance and explainability by introducing an explainable-by-design convolutional neural network (CNN) based on the lateral inhibition mechanism. The ExplaiNet model consists of the predictor, that is a high-accuracy CNN with residual or dense skip connections, and the explainer probabilistic graph that expresses the spatial interactions of the network neurons. The value on each graph node is a local discrete feature (LDF) vector, a patch descriptor that represents the indices of antagonistic neurons ordered by the strength of their activations, which are learned with gradient descent. Using LDFs as sequences we can increase the conciseness of explanations by repurposing EXTREME, an EM-based sequence motif discovery method that is typically used in molecular biology. Having a discrete feature motif matrix for each one of intermediate image representations, instead of a continuous activation tensor, allows us to leverage the inherent explainability of Bayesian networks. By collecting observations and directly calculating probabilities, we can explain causal relationships between motifs of adjacent levels and attribute the model's output to global motifs. Moreover, experiments on various tiny image benchmark datasets confirm that our predictor ensures the same level of performance as the baseline architecture for a given count of parameters and/or layers. Our novel method shows promise to exceed this performance while providing an additional stream of explanations. In the solved MNIST classification task, it reaches a comparable to the state-of-the-art performance for single models, using standard training setup and 0.75 million parameters.
- Abstract(参考訳): 提案手法は,側方抑制機構に基づく説明可能な設計畳み込みニューラルネットワーク(CNN)を導入することで,性能と説明可能性のトレードオフを解消しようとするものである。
ExplaiNetモデルは、残留または密度の高いスキップ接続を持つ高精度CNNである予測器と、ネットワークニューロンの空間的相互作用を表現する説明器確率グラフから構成される。
各グラフノードの値は、局所離散的特徴(LDF)ベクトルであり、それらの活性化の強さによって順序付けられた敵ニューロンの指数を表すパッチ記述子であり、勾配降下によって学習される。
LDFを配列として使用することで、分子生物学で一般的に用いられるEMベースの配列モチーフ探索法であるEXTREMEを再利用することで、説明の簡潔さを高めることができる。
連続活性化テンソルの代わりに、各中間画像表現に対して離散的特徴モチーフ行列を持つことで、ベイズネットワークの本質的な説明可能性を活用することができる。
観測値の収集と確率の直接計算により、隣接するレベルのモチーフ間の因果関係を説明し、そのモデルの出力をグローバルモチーフとみなすことができる。
さらに、様々な小さな画像ベンチマークデータセットの実験では、予測器が与えられたパラメータやレイヤの数に対して、ベースラインアーキテクチャと同じレベルのパフォーマンスを保証することが確認されている。
我々の新しい手法は、さらなる説明の流れを提供しながら、この性能を超えることを約束している。
解決されたMNIST分類タスクでは、標準のトレーニング設定と0.75万のパラメータを使用して、単一のモデルの最先端のパフォーマンスに匹敵する。
関連論文リスト
- Interpretable A-posteriori Error Indication for Graph Neural Network Surrogate Models [0.0]
本稿では,グラフニューラルネットワーク(GNN)の解釈可能性向上手法を提案する。
最終結果は、予測タスクに本質的に関連付けられたサブグラフに対応する物理空間内の領域を分離する解釈可能なGNNモデルである。
解釈可能なGNNは、推論中に予測される予測エラーの大部分に対応するグラフノードを特定するためにも使用できる。
論文 参考訳(メタデータ) (2023-11-13T18:37:07Z) - Neural Tangent Kernels Motivate Graph Neural Networks with
Cross-Covariance Graphs [94.44374472696272]
グラフニューラルネットワーク(GNN)の文脈におけるNTKとアライメントについて検討する。
その結果、2層GNNのアライメントの最適性に関する理論的保証が確立された。
これらの保証は、入力と出力データの相互共分散の関数であるグラフシフト演算子によって特徴づけられる。
論文 参考訳(メタデータ) (2023-10-16T19:54:21Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - Modeling Implicit Bias with Fuzzy Cognitive Maps [0.0]
本稿では、構造化データセットにおける暗黙バイアスを定量化するファジィ認知マップモデルを提案する。
本稿では,ニューロンの飽和を防止する正規化様伝達関数を備えた新しい推論機構を提案する。
論文 参考訳(メタデータ) (2021-12-23T17:04:12Z) - Inference Graphs for CNN Interpretation [12.765543440576144]
畳み込みニューラルネットワーク(CNN)は多くの視覚関連タスクにおいて優れた精度を実現している。
本稿では,確率モデルを用いたネットワーク隠蔽層の活動のモデル化を提案する。
このようなグラフは、クラス全体の推論プロセスの理解や、ネットワークが特定の画像に対して行う決定を説明するのに有用であることを示す。
論文 参考訳(メタデータ) (2021-10-20T13:56:09Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
本稿では,グラフ全体を部分的に観測されたマルコフ確率場としてモデル化するEPFGNN(Explicit Pairwise Factorized Graph Neural Network)を提案する。
出力-出力関係をモデル化するための明示的なペアワイズ要素を含み、入力-出力関係をモデル化するためにGNNバックボーンを使用する。
本研究では,グラフ上での半教師付きノード分類の性能を効果的に向上できることを示す。
論文 参考訳(メタデータ) (2021-07-27T19:47:53Z) - Mitigating Performance Saturation in Neural Marked Point Processes:
Architectures and Loss Functions [50.674773358075015]
本稿では,グラフ畳み込み層のみを利用するGCHPという単純なグラフベースのネットワーク構造を提案する。
我々は,GCHPがトレーニング時間を大幅に短縮し,時間間確率仮定による確率比損失がモデル性能を大幅に改善できることを示した。
論文 参考訳(メタデータ) (2021-07-07T16:59:14Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Scalable Partial Explainability in Neural Networks via Flexible
Activation Functions [13.71739091287644]
ディープニューラルネットワーク(NN)によって与えられる高次元の特徴と決定は、そのメカニズムを公開するために新しいアルゴリズムと方法を必要とする。
現在の最先端のNN解釈手法は、NN構造や操作自体よりも、NN出力と入力との直接的な関係に重点を置いている。
本稿では,スケーラブルなトポロジの下でのアクティベーション関数(AF)の役割を象徴的に説明することにより,部分的に説明可能な学習モデルを実現する。
論文 参考訳(メタデータ) (2020-06-10T20:30:15Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。