論文の概要: Building Multi-Agent Copilot towards Autonomous Agricultural Data Management and Analysis
- arxiv url: http://arxiv.org/abs/2411.00188v1
- Date: Thu, 31 Oct 2024 20:15:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:46:51.646399
- Title: Building Multi-Agent Copilot towards Autonomous Agricultural Data Management and Analysis
- Title(参考訳): 自律型農業データ管理と分析のためのマルチエージェントコパイロットの構築
- Authors: Yu Pan, Jianxin Sun, Hongfeng Yu, Joe Luck, Geng Bai, Nipuna Chamara, Yufeng Ge, Tala Awada,
- Abstract要約: 我々はADMA Copilotと呼ばれる概念実証マルチエージェントシステムを構築し,ユーザの意図を理解する。
ADMA Copilotは、LSMベースのコントローラ、入力フォーマッター、出力フォーマッターの3つのエージェントが協調して、自動的にタスクを実行する。
- 参考スコア(独自算出の注目度): 2.763670421921841
- License:
- Abstract: Current agricultural data management and analysis paradigms are to large extent traditional, in which data collecting, curating, integration, loading, storing, sharing and analyzing still involve too much human effort and know-how. The experts, researchers and the farm operators need to understand the data and the whole process of data management pipeline to make fully use of the data. The essential problem of the traditional paradigm is the lack of a layer of orchestrational intelligence which can understand, organize and coordinate the data processing utilities to maximize data management and analysis outcome. The emerging reasoning and tool mastering abilities of large language models (LLM) make it a potentially good fit to this position, which helps a shift from the traditional user-driven paradigm to AI-driven paradigm. In this paper, we propose and explore the idea of a LLM based copilot for autonomous agricultural data management and analysis. Based on our previously developed platform of Agricultural Data Management and Analytics (ADMA), we build a proof-of-concept multi-agent system called ADMA Copilot, which can understand user's intent, makes plans for data processing pipeline and accomplishes tasks automatically, in which three agents: a LLM based controller, an input formatter and an output formatter collaborate together. Different from existing LLM based solutions, by defining a meta-program graph, our work decouples control flow and data flow to enhance the predictability of the behaviour of the agents. Experiments demonstrates the intelligence, autonomy, efficacy, efficiency, extensibility, flexibility and privacy of our system. Comparison is also made between ours and existing systems to show the superiority and potential of our system.
- Abstract(参考訳): 現在の農業データ管理と分析のパラダイムは、データ収集、キュレーション、統合、ロード、保存、共有、分析といった、従来からある。
専門家、研究者、農家オペレーターは、データを完全に活用するために、データとデータ管理パイプライン全体のプロセスを理解する必要がある。
従来のパラダイムでは、データ管理と分析結果を最大化するためにデータ処理ユーティリティを理解し、整理し、調整できるオーケストレーションインテリジェンス層が欠如している。
大規模言語モデル(LLM)の新たな推論とツールマスタリング能力は、従来のユーザ駆動のパラダイムからAI駆動のパラダイムへの移行を支援するため、この立場に適している可能性がある。
本稿では,LLMを用いた自律型農業データ管理・分析のためのコパイロットの提案と検討を行う。
先程開発した農業データ管理・分析(ADMA)プラットフォームに基づいて,ユーザの意図を理解し,データ処理パイプラインの計画を立て,タスクを自動実行する,ADMA Copilotという概念実証マルチエージェントシステムを構築した。
メタプログラミンググラフを定義することで、既存のLCMベースのソリューションと異なり、エージェントの振る舞いの予測可能性を高めるために制御フローとデータフローを分離します。
実験では、システムの知性、自律性、有効性、効率性、拡張性、柔軟性、プライバシが示されています。
また,我々のシステムと既存システムの比較を行い,システムの優位性と可能性を示す。
関連論文リスト
- Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - LAMBDA: A Large Model Based Data Agent [7.240586338370509]
本稿では,LArge Model Based Data Agent (LAMBDA)を紹介する。
LAMBDAは、複雑なデータ駆動アプリケーションにおけるデータ分析の課題に対処するように設計されている。
それは、人間と人工知能をシームレスに統合することで、データ分析パラダイムを強化する可能性がある。
論文 参考訳(メタデータ) (2024-07-24T06:26:36Z) - Spider2-V: How Far Are Multimodal Agents From Automating Data Science and Engineering Workflows? [73.81908518992161]
我々は、プロのデータサイエンスとエンジニアリングに焦点を当てた最初のマルチモーダルエージェントベンチマークであるSpider2-Vを紹介する。
Spider2-Vは、本物のコンピュータ環境における現実世界のタスクを特徴とし、20のエンタープライズレベルのプロフェッショナルアプリケーションを組み込んでいる。
これらのタスクは、エンタープライズデータソフトウェアシステムにおいて、コードを書き、GUIを管理することで、マルチモーダルエージェントがデータ関連のタスクを実行する能力を評価する。
論文 参考訳(メタデータ) (2024-07-15T17:54:37Z) - AvaTaR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning [93.96463520716759]
大規模言語モデル(LLM)エージェントは、精度と幻覚を高めるために外部ツールと知識を活用する際、印象的な能力を示した。
本稿では、LLMエージェントを最適化して提供されたツールを効果的に活用し、与えられたタスクのパフォーマンスを向上させる新しい自動化フレームワークであるAvaTaRを紹介する。
論文 参考訳(メタデータ) (2024-06-17T04:20:02Z) - Transforming Agriculture with Intelligent Data Management and Insights [3.027257459810039]
現代の農業は、気候変動と天然資源の枯渇の制約の下で、食料、燃料、飼料、繊維の需要の増加に対応するための大きな課題に直面している。
データ革新は、アグロエコシステムの生産性、持続可能性、レジリエンスの確保と改善に緊急に必要です。
論文 参考訳(メタデータ) (2023-11-07T22:02:54Z) - Towards Lightweight Data Integration using Multi-workflow Provenance and
Data Observability [0.2517763905487249]
統合データ分析は、特に現在のAI時代において、科学的発見において重要な役割を果たす。
軽量ランタイム向けマルチワークフロー統合データ分析手法MIDAを提案する。
Summitスーパーコンピュータの1,680個のCPUコア上で,最大10000のタスクを実行するほぼゼロのオーバーヘッドを示す。
論文 参考訳(メタデータ) (2023-08-17T14:20:29Z) - ChatGPT as your Personal Data Scientist [0.9689893038619583]
本稿では,ChatGPTを用いた対話型データサイエンスフレームワークについて紹介する。
データビジュアライゼーション、タスクの定式化、予測エンジニアリング、結果概要と勧告の4つのダイアログ状態を中心に、私たちのモデルが中心になっています。
要約して,会話データ科学の新たな概念が実現可能であることを証明するとともに,複雑なタスクを解く上でLLMが有効であることを示すエンド・ツー・エンド・エンド・システムを開発した。
論文 参考訳(メタデータ) (2023-05-23T04:00:16Z) - Demonstration of InsightPilot: An LLM-Empowered Automated Data
Exploration System [48.62158108517576]
本稿では,データ探索プロセスの簡略化を目的とした自動データ探索システムであるInsightPilotを紹介する。
InsightPilotは、理解、要約、説明などの適切な分析意図を自動的に選択する。
簡単に言うと、IQueryはデータ分析操作の抽象化と自動化であり、データアナリストのアプローチを模倣しています。
論文 参考訳(メタデータ) (2023-04-02T07:27:49Z) - Analytical Engines With Context-Rich Processing: Towards Efficient
Next-Generation Analytics [12.317930859033149]
我々は、文脈に富む分析を可能にするコンポーネントと協調して最適化された分析エンジンを構想する。
我々は、リレーショナルおよびモデルベース演算子間の総括的なパイプラインコストとルールベースの最適化を目指している。
論文 参考訳(メタデータ) (2022-12-14T21:46:33Z) - Dif-MAML: Decentralized Multi-Agent Meta-Learning [54.39661018886268]
我々は,MAML や Dif-MAML と呼ばれる協調型マルチエージェントメタ学習アルゴリズムを提案する。
提案手法により, エージェントの集合が線形速度で合意に達し, 集約MAMLの定常点に収束できることを示す。
シミュレーションの結果は従来の非協調的な環境と比較して理論的な結果と優れた性能を示している。
論文 参考訳(メタデータ) (2020-10-06T16:51:09Z) - Data-driven Koopman Operators for Model-based Shared Control of
Human-Machine Systems [66.65503164312705]
本稿では,データ駆動型共有制御アルゴリズムを提案する。
ユーザのインタラクションに関するダイナミクスと情報は、Koopman演算子を使用して観察から学習される。
モデルに基づく共有制御は、自然な学習やユーザのみの制御パラダイムと比較して、タスクとコントロールのメトリクスを著しく改善する。
論文 参考訳(メタデータ) (2020-06-12T14:14:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。