ADAPT: A Game-Theoretic and Neuro-Symbolic Framework for Automated Distributed Adaptive Penetration Testing
- URL: http://arxiv.org/abs/2411.00217v1
- Date: Thu, 31 Oct 2024 21:32:17 GMT
- Title: ADAPT: A Game-Theoretic and Neuro-Symbolic Framework for Automated Distributed Adaptive Penetration Testing
- Authors: Haozhe Lei, Yunfei Ge, Quanyan Zhu,
- Abstract summary: The integration of AI into modern critical infrastructure systems, such as healthcare, has introduced new vulnerabilities.
ADAPT is a game-theoretic and neuro-symbolic framework for automated distributed adaptive penetration testing.
- Score: 13.101825065498552
- License:
- Abstract: The integration of AI into modern critical infrastructure systems, such as healthcare, has introduced new vulnerabilities that can significantly impact workflow, efficiency, and safety. Additionally, the increased connectivity has made traditional human-driven penetration testing insufficient for assessing risks and developing remediation strategies. Consequently, there is a pressing need for a distributed, adaptive, and efficient automated penetration testing framework that not only identifies vulnerabilities but also provides countermeasures to enhance security posture. This work presents ADAPT, a game-theoretic and neuro-symbolic framework for automated distributed adaptive penetration testing, specifically designed to address the unique cybersecurity challenges of AI-enabled healthcare infrastructure networks. We use a healthcare system case study to illustrate the methodologies within ADAPT. The proposed solution enables a learning-based risk assessment. Numerical experiments are used to demonstrate effective countermeasures against various tactical techniques employed by adversarial AI.
Related papers
- EAIRiskBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [47.69642609574771]
Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction.
Foundation models as the "brain" of EAI agents for high-level task planning have shown promising results.
However, the deployment of these agents in physical environments presents significant safety challenges.
This study introduces EAIRiskBench, a novel framework for automated physical risk assessment in EAI scenarios.
arXiv Detail & Related papers (2024-08-08T13:19:37Z) - Multi-agent Reinforcement Learning-based Network Intrusion Detection System [3.4636217357968904]
Intrusion Detection Systems (IDS) play a crucial role in ensuring the security of computer networks.
We propose a novel multi-agent reinforcement learning (RL) architecture, enabling automatic, efficient, and robust network intrusion detection.
Our solution introduces a resilient architecture designed to accommodate the addition of new attacks and effectively adapt to changes in existing attack patterns.
arXiv Detail & Related papers (2024-07-08T09:18:59Z) - Dynamic Vulnerability Criticality Calculator for Industrial Control Systems [0.0]
This paper introduces an innovative approach by proposing a dynamic vulnerability criticality calculator.
Our methodology encompasses the analysis of environmental topology and the effectiveness of deployed security mechanisms.
Our approach integrates these factors into a comprehensive Fuzzy Cognitive Map model, incorporating attack paths to holistically assess the overall vulnerability score.
arXiv Detail & Related papers (2024-03-20T09:48:47Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - RAISE -- Radiology AI Safety, an End-to-end lifecycle approach [5.829180249228172]
The integration of AI into radiology introduces opportunities for improved clinical care provision and efficiency.
The focus should be on ensuring models meet the highest standards of safety, effectiveness and efficacy.
The roadmap presented herein aims to expedite the achievement of deployable, reliable, and safe AI in radiology.
arXiv Detail & Related papers (2023-11-24T15:59:14Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - Detection of Insider Attacks in Distributed Projected Subgradient
Algorithms [11.096339082411882]
We show that a general neural network is particularly suitable for detecting and localizing malicious agents.
We propose to adopt one of the state-of-art approaches in federated learning, i.e., a collaborative peer-to-peer machine learning protocol.
In our simulations, a least-squared problem is considered to verify the feasibility and effectiveness of AI-based methods.
arXiv Detail & Related papers (2021-01-18T08:01:06Z) - Identifying Vulnerabilities of Industrial Control Systems using
Evolutionary Multiobjective Optimisation [1.8275108630751844]
We identify vulnerabilities in real-world industrial control systems (ICS) using evolutionary multiobjective optimisation (EMO) algorithms.
Our approach is evaluated on a benchmark chemical plant simulator, the Tennessee Eastman (TE) process model.
A defence against these attacks in the form of a novel intrusion detection system was developed.
arXiv Detail & Related papers (2020-05-27T00:22:48Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
Recent advancements in Artificial Intelligence (AI) have brought new capabilities to behavioural analysis (UEBA) for cyber-security.
In this paper, we present a solution to effectively mitigate this attack by improving the detection process and efficiently leveraging human expertise.
arXiv Detail & Related papers (2020-01-13T13:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.