RAISE -- Radiology AI Safety, an End-to-end lifecycle approach
- URL: http://arxiv.org/abs/2311.14570v1
- Date: Fri, 24 Nov 2023 15:59:14 GMT
- Title: RAISE -- Radiology AI Safety, an End-to-end lifecycle approach
- Authors: M. Jorge Cardoso, Julia Moosbauer, Tessa S. Cook, B. Selnur Erdal,
Brad Genereaux, Vikash Gupta, Bennett A. Landman, Tiarna Lee, Parashkev
Nachev, Elanchezhian Somasundaram, Ronald M. Summers, Khaled Younis,
Sebastien Ourselin, Franz MJ Pfister
- Abstract summary: The integration of AI into radiology introduces opportunities for improved clinical care provision and efficiency.
The focus should be on ensuring models meet the highest standards of safety, effectiveness and efficacy.
The roadmap presented herein aims to expedite the achievement of deployable, reliable, and safe AI in radiology.
- Score: 5.829180249228172
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The integration of AI into radiology introduces opportunities for improved
clinical care provision and efficiency but it demands a meticulous approach to
mitigate potential risks as with any other new technology. Beginning with
rigorous pre-deployment evaluation and validation, the focus should be on
ensuring models meet the highest standards of safety, effectiveness and
efficacy for their intended applications. Input and output guardrails
implemented during production usage act as an additional layer of protection,
identifying and addressing individual failures as they occur. Continuous
post-deployment monitoring allows for tracking population-level performance
(data drift), fairness, and value delivery over time. Scheduling reviews of
post-deployment model performance and educating radiologists about new
algorithmic-driven findings is critical for AI to be effective in clinical
practice. Recognizing that no single AI solution can provide absolute assurance
even when limited to its intended use, the synergistic application of quality
assurance at multiple levels - regulatory, clinical, technical, and ethical -
is emphasized. Collaborative efforts between stakeholders spanning healthcare
systems, industry, academia, and government are imperative to address the
multifaceted challenges involved. Trust in AI is an earned privilege,
contingent on a broad set of goals, among them transparently demonstrating that
the AI adheres to the same rigorous safety, effectiveness and efficacy
standards as other established medical technologies. By doing so, developers
can instil confidence among providers and patients alike, enabling the
responsible scaling of AI and the realization of its potential benefits. The
roadmap presented herein aims to expedite the achievement of deployable,
reliable, and safe AI in radiology.
Related papers
- Towards Privacy-aware Mental Health AI Models: Advances, Challenges, and Opportunities [61.633126163190724]
Mental illness is a widespread and debilitating condition with substantial societal and personal costs.
Recent advances in Artificial Intelligence (AI) hold great potential for recognizing and addressing conditions such as depression, anxiety disorder, bipolar disorder, schizophrenia, and post-traumatic stress disorder.
Privacy concerns, including the risk of sensitive data leakage from datasets and trained models, remain a critical barrier to deploying these AI systems in real-world clinical settings.
arXiv Detail & Related papers (2025-02-01T15:10:02Z) - Artificial Intelligence-Driven Clinical Decision Support Systems [5.010570270212569]
The chapter emphasizes that creating trustworthy AI systems in healthcare requires careful consideration of fairness, explainability, and privacy.
The challenge of ensuring equitable healthcare delivery through AI is stressed, discussing methods to identify and mitigate bias in clinical predictive models.
The discussion advances in an analysis of privacy vulnerabilities in medical AI systems, from data leakage in deep learning models to sophisticated attacks against model explanations.
arXiv Detail & Related papers (2025-01-16T16:17:39Z) - Ethical Challenges and Evolving Strategies in the Integration of Artificial Intelligence into Clinical Practice [1.0301404234578682]
We focus on five critical ethical concerns: justice and fairness, transparency, patient consent and confidentiality, accountability, and patient-centered and equitable care.
The paper explores how bias, lack of transparency, and challenges in maintaining patient trust can undermine the effectiveness and fairness of AI applications in healthcare.
arXiv Detail & Related papers (2024-11-18T00:52:22Z) - ADAPT: A Game-Theoretic and Neuro-Symbolic Framework for Automated Distributed Adaptive Penetration Testing [13.101825065498552]
The integration of AI into modern critical infrastructure systems, such as healthcare, has introduced new vulnerabilities.
ADAPT is a game-theoretic and neuro-symbolic framework for automated distributed adaptive penetration testing.
arXiv Detail & Related papers (2024-10-31T21:32:17Z) - Beyond One-Time Validation: A Framework for Adaptive Validation of Prognostic and Diagnostic AI-based Medical Devices [55.319842359034546]
Existing approaches often fall short in addressing the complexity of practically deploying these devices.
The presented framework emphasizes the importance of repeating validation and fine-tuning during deployment.
It is positioned within the current US and EU regulatory landscapes.
arXiv Detail & Related papers (2024-09-07T11:13:52Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction.
Foundation models as the "brain" of EAI agents for high-level task planning have shown promising results.
However, the deployment of these agents in physical environments presents significant safety challenges.
This study introduces EARBench, a novel framework for automated physical risk assessment in EAI scenarios.
arXiv Detail & Related papers (2024-08-08T13:19:37Z) - AI-Driven Healthcare: A Survey on Ensuring Fairness and Mitigating Bias [2.398440840890111]
AI applications have significantly improved diagnostic accuracy, treatment personalization, and patient outcome predictions.
These advancements also introduce substantial ethical and fairness challenges.
These biases can lead to disparities in healthcare delivery, affecting diagnostic accuracy and treatment outcomes across different demographic groups.
arXiv Detail & Related papers (2024-07-29T02:39:17Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
This paper presents meticulously curated AIready datasets covering multi-modal data (e.g., drug molecule, disease code, text, categorical/numerical features) and 8 crucial prediction challenges in clinical trial design.
We provide basic validation methods for each task to ensure the datasets' usability and reliability.
We anticipate that the availability of such open-access datasets will catalyze the development of advanced AI approaches for clinical trial design.
arXiv Detail & Related papers (2024-06-30T09:13:10Z) - Functional requirements to mitigate the Risk of Harm to Patients from
Artificial Intelligence in Healthcare [0.0]
This study proposes 14 functional requirements that AI systems may implement to reduce the risks associated with their medical purpose.
Our intention here is to provide specific high-level specifications of technical solutions to ensure continuous good performance and use of AI systems to benefit patients in compliance with the future EU regulatory framework.
arXiv Detail & Related papers (2023-09-19T08:37:22Z) - U-PASS: an Uncertainty-guided deep learning Pipeline for Automated Sleep
Staging [61.6346401960268]
We propose a machine learning pipeline called U-PASS tailored for clinical applications that incorporates uncertainty estimation at every stage of the process.
We apply our uncertainty-guided deep learning pipeline to the challenging problem of sleep staging and demonstrate that it systematically improves performance at every stage.
arXiv Detail & Related papers (2023-06-07T08:27:36Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
We present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI.
We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data.
arXiv Detail & Related papers (2022-05-19T17:34:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.