LLM-Ref: Enhancing Reference Handling in Technical Writing with Large Language Models
- URL: http://arxiv.org/abs/2411.00294v2
- Date: Mon, 04 Nov 2024 17:57:43 GMT
- Title: LLM-Ref: Enhancing Reference Handling in Technical Writing with Large Language Models
- Authors: Kazi Ahmed Asif Fuad, Lizhong Chen,
- Abstract summary: We present LLM-Ref, a writing assistant tool that aids researchers in writing articles from multiple source documents.
Unlike traditional RAG systems that use chunking and indexing, our tool retrieves and generates content directly from text paragraphs.
Our approach achieves a $3.25times$ to $6.26times$ increase in Ragas score, a comprehensive metric that provides a holistic view of a RAG system's ability to produce accurate, relevant, and contextually appropriate responses.
- Score: 4.1180254968265055
- License:
- Abstract: Large Language Models (LLMs) excel in data synthesis but can be inaccurate in domain-specific tasks, which retrieval-augmented generation (RAG) systems address by leveraging user-provided data. However, RAGs require optimization in both retrieval and generation stages, which can affect output quality. In this paper, we present LLM-Ref, a writing assistant tool that aids researchers in writing articles from multiple source documents with enhanced reference synthesis and handling capabilities. Unlike traditional RAG systems that use chunking and indexing, our tool retrieves and generates content directly from text paragraphs. This method facilitates direct reference extraction from the generated outputs, a feature unique to our tool. Additionally, our tool employs iterative response generation, effectively managing lengthy contexts within the language model's constraints. Compared to baseline RAG-based systems, our approach achieves a $3.25\times$ to $6.26\times$ increase in Ragas score, a comprehensive metric that provides a holistic view of a RAG system's ability to produce accurate, relevant, and contextually appropriate responses. This improvement shows our method enhances the accuracy and contextual relevance of writing assistance tools.
Related papers
- VisRAG: Vision-based Retrieval-augmented Generation on Multi-modality Documents [66.42579289213941]
Retrieval-augmented generation (RAG) is an effective technique that enables large language models to utilize external knowledge sources for generation.
In this paper, we introduce VisRAG, which tackles this issue by establishing a vision-language model (VLM)-based RAG pipeline.
In this pipeline, instead of first parsing the document to obtain text, the document is directly embedded using a VLM as an image and then retrieved to enhance the generation of a VLM.
arXiv Detail & Related papers (2024-10-14T15:04:18Z) - Meta Knowledge for Retrieval Augmented Large Language Models [0.0]
We introduce a novel data-centric RAG workflow for Large Language Models (LLMs)
Our methodology relies on generating metadata and synthetic Questions and Answers (QA) for each document.
We demonstrate that using augmented queries with synthetic question matching significantly outperforms traditional RAG pipelines.
arXiv Detail & Related papers (2024-08-16T20:55:21Z) - GQE: Generalized Query Expansion for Enhanced Text-Video Retrieval [56.610806615527885]
This paper introduces a novel data-centric approach, Generalized Query Expansion (GQE), to address the inherent information imbalance between text and video.
By adaptively segmenting videos into short clips and employing zero-shot captioning, GQE enriches the training dataset with comprehensive scene descriptions.
GQE achieves state-of-the-art performance on several benchmarks, including MSR-VTT, MSVD, LSMDC, and VATEX.
arXiv Detail & Related papers (2024-08-14T01:24:09Z) - Accelerating Inference of Retrieval-Augmented Generation via Sparse Context Selection [28.15184715270483]
Large language models (LLMs) augmented with retrieval exhibit robust performance and extensive versatility.
We propose a novel paradigm named Sparse RAG, which seeks to cut costs through sparsity.
Sparse RAG encodes retrieved documents in parallel, which eliminates latency introduced by long-range attention of retrieved documents.
arXiv Detail & Related papers (2024-05-25T11:10:04Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
We propose an information refinement training method named InFO-RAG.
InFO-RAG is low-cost and general across various tasks.
It improves the performance of LLaMA2 by an average of 9.39% relative points.
arXiv Detail & Related papers (2024-02-28T08:24:38Z) - CorpusLM: Towards a Unified Language Model on Corpus for Knowledge-Intensive Tasks [20.390672895839757]
Retrieval-augmented generation (RAG) has emerged as a popular solution to enhance factual accuracy.
Traditional retrieval modules often rely on large document index and disconnect with generative tasks.
We propose textbfCorpusLM, a unified language model that integrates generative retrieval, closed-book generation, and RAG.
arXiv Detail & Related papers (2024-02-02T06:44:22Z) - Harnessing Explanations: LLM-to-LM Interpreter for Enhanced
Text-Attributed Graph Representation Learning [51.90524745663737]
A key innovation is our use of explanations as features, which can be used to boost GNN performance on downstream tasks.
Our method achieves state-of-the-art results on well-established TAG datasets.
Our method significantly speeds up training, achieving a 2.88 times improvement over the closest baseline on ogbn-arxiv.
arXiv Detail & Related papers (2023-05-31T03:18:03Z) - Enabling Large Language Models to Generate Text with Citations [37.64884969997378]
Large language models (LLMs) have emerged as a widely-used tool for information seeking.
Our aim is to allow LLMs to generate text with citations, improving their factual correctness and verifiability.
We propose ALCE, the first benchmark for Automatic LLMs' Citation Evaluation.
arXiv Detail & Related papers (2023-05-24T01:53:49Z) - Generate rather than Retrieve: Large Language Models are Strong Context
Generators [74.87021992611672]
We present a novel perspective for solving knowledge-intensive tasks by replacing document retrievers with large language model generators.
We call our method generate-then-read (GenRead), which first prompts a large language model to generate contextutal documents based on a given question, and then reads the generated documents to produce the final answer.
arXiv Detail & Related papers (2022-09-21T01:30:59Z) - Autoregressive Search Engines: Generating Substrings as Document
Identifiers [53.0729058170278]
Autoregressive language models are emerging as the de-facto standard for generating answers.
Previous work has explored ways to partition the search space into hierarchical structures.
In this work we propose an alternative that doesn't force any structure in the search space: using all ngrams in a passage as its possible identifiers.
arXiv Detail & Related papers (2022-04-22T10:45:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.