Meta Knowledge for Retrieval Augmented Large Language Models
- URL: http://arxiv.org/abs/2408.09017v1
- Date: Fri, 16 Aug 2024 20:55:21 GMT
- Title: Meta Knowledge for Retrieval Augmented Large Language Models
- Authors: Laurent Mombaerts, Terry Ding, Adi Banerjee, Florian Felice, Jonathan Taws, Tarik Borogovac,
- Abstract summary: We introduce a novel data-centric RAG workflow for Large Language Models (LLMs)
Our methodology relies on generating metadata and synthetic Questions and Answers (QA) for each document.
We demonstrate that using augmented queries with synthetic question matching significantly outperforms traditional RAG pipelines.
- Score: 0.0
- License:
- Abstract: Retrieval Augmented Generation (RAG) is a technique used to augment Large Language Models (LLMs) with contextually relevant, time-critical, or domain-specific information without altering the underlying model parameters. However, constructing RAG systems that can effectively synthesize information from large and diverse set of documents remains a significant challenge. We introduce a novel data-centric RAG workflow for LLMs, transforming the traditional retrieve-then-read system into a more advanced prepare-then-rewrite-then-retrieve-then-read framework, to achieve higher domain expert-level understanding of the knowledge base. Our methodology relies on generating metadata and synthetic Questions and Answers (QA) for each document, as well as introducing the new concept of Meta Knowledge Summary (MK Summary) for metadata-based clusters of documents. The proposed innovations enable personalized user-query augmentation and in-depth information retrieval across the knowledge base. Our research makes two significant contributions: using LLMs as evaluators and employing new comparative performance metrics, we demonstrate that (1) using augmented queries with synthetic question matching significantly outperforms traditional RAG pipelines that rely on document chunking (p < 0.01), and (2) meta knowledge-augmented queries additionally significantly improve retrieval precision and recall, as well as the final answers breadth, depth, relevancy, and specificity. Our methodology is cost-effective, costing less than $20 per 2000 research papers using Claude 3 Haiku, and can be adapted with any fine-tuning of either the language or embedding models to further enhance the performance of end-to-end RAG pipelines.
Related papers
- G-RAG: Knowledge Expansion in Material Science [0.0]
Graph RAG integrates graph databases to enhance the retrieval process.
We implement an agent-based parsing technique to achieve a more detailed representation of the documents.
arXiv Detail & Related papers (2024-11-21T21:22:58Z) - LLM-Ref: Enhancing Reference Handling in Technical Writing with Large Language Models [4.1180254968265055]
We present LLM-Ref, a writing assistant tool that aids researchers in writing articles from multiple source documents.
Unlike traditional RAG systems that use chunking and indexing, our tool retrieves and generates content directly from text paragraphs.
Our approach achieves a $3.25times$ to $6.26times$ increase in Ragas score, a comprehensive metric that provides a holistic view of a RAG system's ability to produce accurate, relevant, and contextually appropriate responses.
arXiv Detail & Related papers (2024-11-01T01:11:58Z) - Aggregated Knowledge Model: Enhancing Domain-Specific QA with Fine-Tuned and Retrieval-Augmented Generation Models [0.0]
This paper introduces a novel approach to enhancing closed-domain Question Answering (QA) systems.
It focuses on the specific needs of the Lawrence Berkeley National Laboratory (LBL) Science Information Technology (ScienceIT) domain.
arXiv Detail & Related papers (2024-10-24T00:49:46Z) - Beyond Retrieval: Generating Narratives in Conversational Recommender Systems [4.912663905306209]
We introduce a new dataset (REGEN) for natural language generation tasks in conversational recommendations.
We establish benchmarks using well-known generative metrics, and perform an automated evaluation of the new dataset using a rater LLM.
And to the best of our knowledge, represents the first attempt to analyze the capabilities of LLMs in understanding recommender signals and generating rich narratives.
arXiv Detail & Related papers (2024-10-22T07:53:41Z) - Developing Retrieval Augmented Generation (RAG) based LLM Systems from PDFs: An Experience Report [3.4632900249241874]
This paper presents an experience report on the development of Retrieval Augmented Generation (RAG) systems using PDF documents as the primary data source.
The RAG architecture combines generative capabilities of Large Language Models (LLMs) with the precision of information retrieval.
The practical implications of this research lie in enhancing the reliability of generative AI systems in various sectors.
arXiv Detail & Related papers (2024-10-21T12:21:49Z) - VisRAG: Vision-based Retrieval-augmented Generation on Multi-modality Documents [66.42579289213941]
Retrieval-augmented generation (RAG) is an effective technique that enables large language models to utilize external knowledge sources for generation.
In this paper, we introduce VisRAG, which tackles this issue by establishing a vision-language model (VLM)-based RAG pipeline.
In this pipeline, instead of first parsing the document to obtain text, the document is directly embedded using a VLM as an image and then retrieved to enhance the generation of a VLM.
arXiv Detail & Related papers (2024-10-14T15:04:18Z) - STaRK: Benchmarking LLM Retrieval on Textual and Relational Knowledge Bases [93.96463520716759]
We develop STARK, a large-scale Semi-structure retrieval benchmark on Textual and Knowledge Bases.
Our benchmark covers three domains: product search, academic paper search, and queries in precision medicine.
We design a novel pipeline to synthesize realistic user queries that integrate diverse relational information and complex textual properties.
arXiv Detail & Related papers (2024-04-19T22:54:54Z) - Generative Multi-Modal Knowledge Retrieval with Large Language Models [75.70313858231833]
We propose an innovative end-to-end generative framework for multi-modal knowledge retrieval.
Our framework takes advantage of the fact that large language models (LLMs) can effectively serve as virtual knowledge bases.
We demonstrate significant improvements ranging from 3.0% to 14.6% across all evaluation metrics when compared to strong baselines.
arXiv Detail & Related papers (2024-01-16T08:44:29Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
Large Language Models (LLMs) have exhibited impressive generation capabilities, but they suffer from hallucinations when relying on their internal knowledge.
Retrieval-augmented LLMs have emerged as a potential solution to ground LLMs in external knowledge.
arXiv Detail & Related papers (2023-10-31T04:37:57Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteR allows RMs to expand knowledge in queries using LLM-generated knowledge collections.
InteR achieves overall superior zero-shot retrieval performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-05-12T11:58:15Z) - Incorporating Relevance Feedback for Information-Seeking Retrieval using
Few-Shot Document Re-Ranking [56.80065604034095]
We introduce a kNN approach that re-ranks documents based on their similarity with the query and the documents the user considers relevant.
To evaluate our different integration strategies, we transform four existing information retrieval datasets into the relevance feedback scenario.
arXiv Detail & Related papers (2022-10-19T16:19:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.