Rationale-Guided Retrieval Augmented Generation for Medical Question Answering
- URL: http://arxiv.org/abs/2411.00300v1
- Date: Fri, 01 Nov 2024 01:40:23 GMT
- Title: Rationale-Guided Retrieval Augmented Generation for Medical Question Answering
- Authors: Jiwoong Sohn, Yein Park, Chanwoong Yoon, Sihyeon Park, Hyeon Hwang, Mujeen Sung, Hyunjae Kim, Jaewoo Kang,
- Abstract summary: Large language models (LLM) hold significant potential for applications in biomedicine.
RAG$2$ is a new framework for enhancing the reliability of RAG in biomedical contexts.
- Score: 18.8818391508042
- License:
- Abstract: Large language models (LLM) hold significant potential for applications in biomedicine, but they struggle with hallucinations and outdated knowledge. While retrieval-augmented generation (RAG) is generally employed to address these issues, it also has its own set of challenges: (1) LLMs are vulnerable to irrelevant or incorrect context, (2) medical queries are often not well-targeted for helpful information, and (3) retrievers are prone to bias toward the specific source corpus they were trained on. In this study, we present RAG$^2$ (RAtionale-Guided RAG), a new framework for enhancing the reliability of RAG in biomedical contexts. RAG$^2$ incorporates three key innovations: a small filtering model trained on perplexity-based labels of rationales, which selectively augments informative snippets of documents while filtering out distractors; LLM-generated rationales as queries to improve the utility of retrieved snippets; a structure designed to retrieve snippets evenly from a comprehensive set of four biomedical corpora, effectively mitigating retriever bias. Our experiments demonstrate that RAG$^2$ improves the state-of-the-art LLMs of varying sizes, with improvements of up to 6.1\%, and it outperforms the previous best medical RAG model by up to 5.6\% across three medical question-answering benchmarks. Our code is available at https://github.com/dmis-lab/RAG2.
Related papers
- mR$^2$AG: Multimodal Retrieval-Reflection-Augmented Generation for Knowledge-Based VQA [78.45521005703958]
multimodal Retrieval-Augmented Generation (mRAG) is naturally introduced to provide MLLMs with comprehensive and up-to-date knowledge.
We propose a novel framework called textbfRetrieval-textbfReftextbfAugmented textbfGeneration (mR$2$AG) which achieves adaptive retrieval and useful information localization.
mR$2$AG significantly outperforms state-of-the-art MLLMs on INFOSEEK and Encyclopedic-VQA
arXiv Detail & Related papers (2024-11-22T16:15:50Z) - Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented generation (RAG) has emerged as a promising approach to enhance the performance of large language models (LLMs)
We introduce Medical Retrieval-Augmented Generation Benchmark (MedRGB) that provides various supplementary elements to four medical QA datasets.
Our experimental results reveals current models' limited ability to handle noise and misinformation in the retrieved documents.
arXiv Detail & Related papers (2024-11-14T06:19:18Z) - LLM Robustness Against Misinformation in Biomedical Question Answering [50.98256373698759]
The retrieval-augmented generation (RAG) approach is used to reduce the confabulation of large language models (LLMs) for question answering.
We evaluate the effectiveness and robustness of four LLMs against misinformation in answering biomedical questions.
arXiv Detail & Related papers (2024-10-27T16:23:26Z) - MMed-RAG: Versatile Multimodal RAG System for Medical Vision Language Models [49.765466293296186]
Recent progress in Medical Large Vision-Language Models (Med-LVLMs) has opened up new possibilities for interactive diagnostic tools.
Med-LVLMs often suffer from factual hallucination, which can lead to incorrect diagnoses.
We propose a versatile multimodal RAG system, MMed-RAG, designed to enhance the factuality of Med-LVLMs.
arXiv Detail & Related papers (2024-10-16T23:03:27Z) - Improving Retrieval-Augmented Generation in Medicine with Iterative Follow-up Questions [42.73799041840482]
i-MedRAG is a system that iteratively asks follow-up queries based on previous information-seeking attempts.
Our zero-shot i-MedRAG outperforms all existing prompt engineering and fine-tuning methods on GPT-3.5.
i-MedRAG can flexibly ask follow-up queries to form reasoning chains, providing an in-depth analysis of medical questions.
arXiv Detail & Related papers (2024-08-01T17:18:17Z) - RULE: Reliable Multimodal RAG for Factuality in Medical Vision Language Models [35.60385437194243]
Current Medical Large Vision Language Models (Med-LVLMs) frequently encounter factual issues.
RAG, which utilizes external knowledge, can improve the factual accuracy of these models but introduces two major challenges.
We propose RULE, which consists of two components. First, we introduce a provably effective strategy for controlling factuality risk through the selection of retrieved contexts.
Second, based on samples where over-reliance on retrieved contexts led to errors, we curate a preference dataset to fine-tune the model.
arXiv Detail & Related papers (2024-07-06T16:45:07Z) - SeRTS: Self-Rewarding Tree Search for Biomedical Retrieval-Augmented Generation [50.26966969163348]
Large Language Models (LLMs) have shown great potential in the biomedical domain with the advancement of retrieval-augmented generation (RAG)
Existing retrieval-augmented approaches face challenges in addressing diverse queries and documents, particularly for medical knowledge queries.
We propose Self-Rewarding Tree Search (SeRTS) based on Monte Carlo Tree Search (MCTS) and a self-rewarding paradigm.
arXiv Detail & Related papers (2024-06-17T06:48:31Z) - BiomedRAG: A Retrieval Augmented Large Language Model for Biomedicine [19.861178160437827]
Large Language Models (LLMs) have swiftly emerged as vital resources for different applications in the biomedical and healthcare domains.
textscBiomedRAG attains superior performance across 5 biomedical NLP tasks.
textscBiomedRAG outperforms other triple extraction systems with micro-F1 scores of 81.42 and 88.83 on GIT and ChemProt corpora, respectively.
arXiv Detail & Related papers (2024-05-01T12:01:39Z) - Benchmarking Retrieval-Augmented Generation for Medicine [30.390132015614128]
Large language models (LLMs) have achieved state-of-the-art performance on a wide range of medical question answering (QA) tasks.
Retrieval-augmented generation (RAG) is a promising solution and has been widely adopted.
We propose the Medical Information Retrieval-Augmented Generation Evaluation (MIRAGE), a first-of-its-kind benchmark including 7,663 questions from five medical QA datasets.
arXiv Detail & Related papers (2024-02-20T17:44:06Z) - Benchmarking Large Language Models in Retrieval-Augmented Generation [53.504471079548]
We systematically investigate the impact of Retrieval-Augmented Generation on large language models.
We analyze the performance of different large language models in 4 fundamental abilities required for RAG.
We establish Retrieval-Augmented Generation Benchmark (RGB), a new corpus for RAG evaluation in both English and Chinese.
arXiv Detail & Related papers (2023-09-04T08:28:44Z) - Improving Biomedical Information Retrieval with Neural Retrievers [30.778569849542837]
We propose a template-based question generation method that can be leveraged to train neural retriever models.
Second, we develop two novel pre-training tasks that are closely aligned to the downstream task of information retrieval.
Third, we introduce the Poly-DPR'' model which encodes each context into multiple context vectors.
arXiv Detail & Related papers (2022-01-19T17:36:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.