論文の概要: A Simple Remedy for Dataset Bias via Self-Influence: A Mislabeled Sample Perspective
- arxiv url: http://arxiv.org/abs/2411.00360v1
- Date: Fri, 01 Nov 2024 04:54:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:50:09.939735
- Title: A Simple Remedy for Dataset Bias via Self-Influence: A Mislabeled Sample Perspective
- Title(参考訳): セルフインフルエンスによるデータセットバイアスの簡易対策 : ミスラベル付きサンプル・パースペクティブ
- Authors: Yeonsung Jung, Jaeyun Song, June Yong Yang, Jin-Hwa Kim, Sung-Yub Kim, Eunho Yang,
- Abstract要約: 本稿では,誤ラベル検出の新たな視点を提案する。
我々の新しい視点は、検出の精度を高め、バイアスのあるモデルを効果的に修正できることを示します。
提案手法は既存の手法を補完するものであり,近年のデバイアス化手法をすでに適用しているモデルに適用しても,性能改善を示す。
- 参考スコア(独自算出の注目度): 33.78421391776591
- License:
- Abstract: Learning generalized models from biased data is an important undertaking toward fairness in deep learning. To address this issue, recent studies attempt to identify and leverage bias-conflicting samples free from spurious correlations without prior knowledge of bias or an unbiased set. However, spurious correlation remains an ongoing challenge, primarily due to the difficulty in precisely detecting these samples. In this paper, inspired by the similarities between mislabeled samples and bias-conflicting samples, we approach this challenge from a novel perspective of mislabeled sample detection. Specifically, we delve into Influence Function, one of the standard methods for mislabeled sample detection, for identifying bias-conflicting samples and propose a simple yet effective remedy for biased models by leveraging them. Through comprehensive analysis and experiments on diverse datasets, we demonstrate that our new perspective can boost the precision of detection and rectify biased models effectively. Furthermore, our approach is complementary to existing methods, showing performance improvement even when applied to models that have already undergone recent debiasing techniques.
- Abstract(参考訳): 偏りのあるデータから一般化されたモデルを学習することは、深層学習における公平性への重要な取り組みである。
この問題に対処するために、最近の研究では、偏見の事前知識や偏見のない集合を使わずに、突発的な相関のない偏見に富むサンプルを特定し、活用しようとしている。
しかしながら、これらのサンプルを正確に検出することが困難であることから、急激な相関は現在も進行中の課題である。
本稿では, 誤ラベル検体と偏り強調検体との類似性に着想を得て, 誤ラベル検体検出の新しい視点から, この問題にアプローチする。
具体的には、偏りを伴わないサンプルを識別するために、誤ラベルされたサンプル検出の標準手法であるインフルエンス関数を探索し、それらを活用することで、偏りのあるモデルに対する単純かつ効果的な治療法を提案する。
多様なデータセットに関する包括的な分析と実験を通じて、我々の新しい視点が検出の精度を高め、バイアスのあるモデルを効果的に修正できることを実証する。
さらに,本手法は既存手法と相補的であり,近年のデバイアス化手法を適用したモデルに適用しても,性能改善を示す。
関連論文リスト
- Looking at Model Debiasing through the Lens of Anomaly Detection [11.113718994341733]
ディープニューラルネットワークはデータのバイアスに敏感である。
本稿では,異常検出に基づく新しいバイアス同定手法を提案する。
合成および実際のベンチマークデータセット上で、最先端のパフォーマンスに到達する。
論文 参考訳(メタデータ) (2024-07-24T17:30:21Z) - Enhancing Intrinsic Features for Debiasing via Investigating Class-Discerning Common Attributes in Bias-Contrastive Pair [36.221761997349795]
ディープニューラルネットワークは、データセットバイアスの存在下でターゲットクラスと急激な相関を持つバイアス特性に依存している。
本稿では,本質的特徴の領域を示す空間的指示を明示的に提示する手法を提案する。
実験により, 種々のバイアス重大度を有する合成および実世界のデータセットに対して, 最先端の性能を達成できることが実証された。
論文 参考訳(メタデータ) (2024-04-30T04:13:14Z) - Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation [53.27596811146316]
拡散モデルは、以前の文脈における瞬間的な入出力関係ではなく、一連のタイムステップで操作する。
本稿では、この時間的ダイナミクスを取り入れた拡散トラクInについて、サンプルの損失勾配ノルムが時間ステップに大きく依存していることを確認する。
そこで我々はDiffusion-ReTracを再正規化適応として導入し、興味のあるサンプルを対象にしたトレーニングサンプルの検索を可能にする。
論文 参考訳(メタデータ) (2024-01-17T07:58:18Z) - Hybrid Sample Synthesis-based Debiasing of Classifier in Limited Data
Setting [5.837881923712393]
本稿では,バイアスに関する事前情報を持たない,より実践的な設定に焦点を当てる。
この設定では、モデルがバイアス予測を発生させるようなバイアスアライメントされたサンプルが多数存在する。
トレーニングデータに制限がある場合、バイアスアライメントされたサンプルの影響がモデル予測にさらに強くなる可能性がある。
論文 参考訳(メタデータ) (2023-12-13T17:04:16Z) - IBADR: an Iterative Bias-Aware Dataset Refinement Framework for
Debiasing NLU models [52.03761198830643]
IBADR(Iterative Bias-Aware dataset Refinement framework)を提案する。
まず、プール内のサンプルのバイアス度を定量化するために浅いモデルを訓練する。
次に、各サンプルにバイアス度を表すバイアス指標をペアにして、これらの拡張サンプルを使用してサンプルジェネレータを訓練する。
このようにして、このジェネレータは、バイアスインジケータとサンプルの対応関係を効果的に学習することができる。
論文 参考訳(メタデータ) (2023-11-01T04:50:38Z) - Delving into Identify-Emphasize Paradigm for Combating Unknown Bias [52.76758938921129]
同定精度を高めるため,有効バイアス強調スコアリング法(ECS)を提案する。
また, マイニングされたバイアスアライメントとバイアスコンプリケート試料のコントリビューションのバランスをとるために, 勾配アライメント(GA)を提案する。
様々な環境で複数のデータセットで実験を行い、提案されたソリューションが未知のバイアスの影響を軽減することを実証した。
論文 参考訳(メタデータ) (2023-02-22T14:50:24Z) - Feature-Level Debiased Natural Language Understanding [86.8751772146264]
既存の自然言語理解(NLU)モデルは、特定のデータセットで高いパフォーマンスを達成するために、データセットバイアスに依存することが多い。
本稿では, バイアスの潜在特性を緩和し, バイアスの動的性質を無視するために, DCT(Debiasing contrastive learning)を提案する。
DCTは、ディストリビューション内のパフォーマンスを維持しながら、アウトオブディストリビューションデータセットの最先端のベースラインを上回ります。
論文 参考訳(メタデータ) (2022-12-11T06:16:14Z) - Towards Robust Visual Question Answering: Making the Most of Biased
Samples via Contrastive Learning [54.61762276179205]
我々は,ビザドサンプルを最大限に活用することで,ロバストなVQAモデルを構築するための新しいコントラスト学習手法 MMBS を提案する。
具体的には、元のトレーニングサンプルからスプリアス相関に関連する情報を排除し、比較学習のための正のサンプルを構築する。
我々は,OODデータセットのVQA-CP v2において,IDデータセットのVQA v2上での堅牢なパフォーマンスを維持しながら,競争性能を達成することで,コントリビューションを検証した。
論文 参考訳(メタデータ) (2022-10-10T11:05:21Z) - Saliency Grafting: Innocuous Attribution-Guided Mixup with Calibrated
Label Mixing [104.630875328668]
ミックスアップスキームは、強化されたトレーニングサンプルを作成するために、サンプルのペアを混ぜることを提案する。
両世界のベストを捉えた、斬新だがシンプルなミックスアップ版を提示する。
論文 参考訳(メタデータ) (2021-12-16T11:27:48Z) - Learning Debiased Representation via Disentangled Feature Augmentation [19.348340314001756]
本稿では, 様々なバイアスを伴うサンプルを用いたトレーニングが, 脱バイアスに不可欠であることを示す実験的検討を行った。
本稿では, 多様なバイアス分散サンプルを合成するために, 特徴レベルのデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2021-07-03T08:03:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。