Hierarchical Preference Optimization: Learning to achieve goals via feasible subgoals prediction
- URL: http://arxiv.org/abs/2411.00361v1
- Date: Fri, 01 Nov 2024 04:58:40 GMT
- Title: Hierarchical Preference Optimization: Learning to achieve goals via feasible subgoals prediction
- Authors: Utsav Singh, Souradip Chakraborty, Wesley A. Suttle, Brian M. Sadler, Anit Kumar Sahu, Mubarak Shah, Vinay P. Namboodiri, Amrit Singh Bedi,
- Abstract summary: This work introduces Hierarchical Preference Optimization (HPO), a novel approach to hierarchical reinforcement learning (HRL)
HPO addresses non-stationarity and infeasible subgoal generation issues when solving complex robotic control tasks.
Experiments on challenging robotic navigation and manipulation tasks demonstrate impressive performance of HPO, where it shows an improvement of up to 35% over the baselines.
- Score: 71.81851971324187
- License:
- Abstract: This work introduces Hierarchical Preference Optimization (HPO), a novel approach to hierarchical reinforcement learning (HRL) that addresses non-stationarity and infeasible subgoal generation issues when solving complex robotic control tasks. HPO leverages maximum entropy reinforcement learning combined with token-level Direct Preference Optimization (DPO), eliminating the need for pre-trained reference policies that are typically unavailable in challenging robotic scenarios. Mathematically, we formulate HRL as a bi-level optimization problem and transform it into a primitive-regularized DPO formulation, ensuring feasible subgoal generation and avoiding degenerate solutions. Extensive experiments on challenging robotic navigation and manipulation tasks demonstrate impressive performance of HPO, where it shows an improvement of up to 35% over the baselines. Furthermore, ablation studies validate our design choices, and quantitative analyses confirm the ability of HPO to mitigate non-stationarity and infeasible subgoal generation issues in HRL.
Related papers
- Entropy Controllable Direct Preference Optimization [3.536605202672355]
We propose a simple modification to DPO, H-DPO, which allows for control over the entropy of the resulting policy.
In our experiments, we show that H-DPO outperformed DPO across various tasks, demonstrating superior results in pass@$k$ evaluations for mathematical tasks.
arXiv Detail & Related papers (2024-11-12T07:09:44Z) - Joint Demonstration and Preference Learning Improves Policy Alignment with Human Feedback [58.049113055986375]
We develop a single stage approach named Alignment with Integrated Human Feedback (AIHF) to train reward models and the policy.
The proposed approach admits a suite of efficient algorithms, which can easily reduce to, and leverage, popular alignment algorithms.
We demonstrate the efficiency of the proposed solutions with extensive experiments involving alignment problems in LLMs and robotic control problems in MuJoCo.
arXiv Detail & Related papers (2024-06-11T01:20:53Z) - Exploratory Preference Optimization: Harnessing Implicit Q*-Approximation for Sample-Efficient RLHF [82.7679132059169]
Reinforcement learning from human feedback has emerged as a central tool for language model alignment.
We propose a new algorithm for online exploration in RLHF, Exploratory Preference Optimization (XPO)
XPO enjoys the strongest known provable guarantees and promising empirical performance.
arXiv Detail & Related papers (2024-05-31T17:39:06Z) - Hyperparameter Optimization Can Even be Harmful in Off-Policy Learning and How to Deal with It [20.312864152544954]
We show that naively applying an unbiased estimator of the generalization performance as a surrogate objective in HPO can cause an unexpected failure.
We propose simple and computationally efficient corrections to the typical HPO procedure to deal with the aforementioned issues simultaneously.
arXiv Detail & Related papers (2024-04-23T14:34:16Z) - From $r$ to $Q^*$: Your Language Model is Secretly a Q-Function [50.812404038684505]
We show that we can derive DPO in the token-level MDP as a general inverse Q-learning algorithm, which satisfies the Bellman equation.
We discuss applications of our work, including information elicitation in multi-turn dialogue, reasoning, agentic applications and end-to-end training of multi-model systems.
arXiv Detail & Related papers (2024-04-18T17:37:02Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - Beyond Reverse KL: Generalizing Direct Preference Optimization with
Diverse Divergence Constraints [26.274786600234876]
The increasing capabilities of large language models (LLMs) raise opportunities for artificial general intelligence but amplify safety concerns.
RLHF has emerged as a promising pathway towards AI alignment but brings forth challenges due to its complexity and dependence on a separate reward model.
DPO has been proposed as an alternative, and it remains equivalent to RLHF under the reverse KL regularization constraint.
We show that under certain $f$-divergences, including Jensen-Shannon divergence, forward KL divergences and $alpha$-divergences, the complex relationship between the reward and optimal policy can also be simplified
arXiv Detail & Related papers (2023-09-28T08:29:44Z) - Secrets of RLHF in Large Language Models Part I: PPO [81.01936993929127]
Large language models (LLMs) have formulated a blueprint for the advancement of artificial general intelligence.
reinforcement learning with human feedback (RLHF) emerges as the pivotal technological paradigm underpinning this pursuit.
In this report, we dissect the framework of RLHF, re-evaluate the inner workings of PPO, and explore how the parts comprising PPO algorithms impact policy agent training.
arXiv Detail & Related papers (2023-07-11T01:55:24Z) - Improving Hyperparameter Optimization by Planning Ahead [3.8673630752805432]
We propose a novel transfer learning approach, defined within the context of model-based reinforcement learning.
We propose a new variant of model predictive control which employs a simple look-ahead strategy as a policy.
Our experiments on three meta-datasets comparing to state-of-the-art HPO algorithms show that the proposed method can outperform all baselines.
arXiv Detail & Related papers (2021-10-15T11:46:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.