Secrets of RLHF in Large Language Models Part I: PPO
- URL: http://arxiv.org/abs/2307.04964v2
- Date: Tue, 18 Jul 2023 08:44:47 GMT
- Title: Secrets of RLHF in Large Language Models Part I: PPO
- Authors: Rui Zheng, Shihan Dou, Songyang Gao, Yuan Hua, Wei Shen, Binghai Wang,
Yan Liu, Senjie Jin, Qin Liu, Yuhao Zhou, Limao Xiong, Lu Chen, Zhiheng Xi,
Nuo Xu, Wenbin Lai, Minghao Zhu, Cheng Chang, Zhangyue Yin, Rongxiang Weng,
Wensen Cheng, Haoran Huang, Tianxiang Sun, Hang Yan, Tao Gui, Qi Zhang,
Xipeng Qiu, Xuanjing Huang
- Abstract summary: Large language models (LLMs) have formulated a blueprint for the advancement of artificial general intelligence.
reinforcement learning with human feedback (RLHF) emerges as the pivotal technological paradigm underpinning this pursuit.
In this report, we dissect the framework of RLHF, re-evaluate the inner workings of PPO, and explore how the parts comprising PPO algorithms impact policy agent training.
- Score: 81.01936993929127
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have formulated a blueprint for the advancement
of artificial general intelligence. Its primary objective is to function as a
human-centric (helpful, honest, and harmless) assistant. Alignment with humans
assumes paramount significance, and reinforcement learning with human feedback
(RLHF) emerges as the pivotal technological paradigm underpinning this pursuit.
Current technical routes usually include \textbf{reward models} to measure
human preferences, \textbf{Proximal Policy Optimization} (PPO) to optimize
policy model outputs, and \textbf{process supervision} to improve step-by-step
reasoning capabilities. However, due to the challenges of reward design,
environment interaction, and agent training, coupled with huge trial and error
cost of large language models, there is a significant barrier for AI
researchers to motivate the development of technical alignment and safe landing
of LLMs. The stable training of RLHF has still been a puzzle. In the first
report, we dissect the framework of RLHF, re-evaluate the inner workings of
PPO, and explore how the parts comprising PPO algorithms impact policy agent
training. We identify policy constraints being the key factor for the effective
implementation of the PPO algorithm. Therefore, we explore the PPO-max, an
advanced version of PPO algorithm, to efficiently improve the training
stability of the policy model. Based on our main results, we perform a
comprehensive analysis of RLHF abilities compared with SFT models and ChatGPT.
The absence of open-source implementations has posed significant challenges to
the investigation of LLMs alignment. Therefore, we are eager to release
technical reports, reward models and PPO codes, aiming to make modest
contributions to the advancement of LLMs.
Related papers
- Joint Demonstration and Preference Learning Improves Policy Alignment with Human Feedback [58.049113055986375]
We develop a single stage approach named Alignment with Integrated Human Feedback (AIHF) to train reward models and the policy.
The proposed approach admits a suite of efficient algorithms, which can easily reduce to, and leverage, popular alignment algorithms.
We demonstrate the efficiency of the proposed solutions with extensive experiments involving alignment problems in LLMs and robotic control problems in MuJoCo.
arXiv Detail & Related papers (2024-06-11T01:20:53Z) - Exploratory Preference Optimization: Harnessing Implicit Q*-Approximation for Sample-Efficient RLHF [82.7679132059169]
Reinforcement learning from human feedback has emerged as a central tool for language model alignment.
We propose a new algorithm for online exploration in RLHF, Exploratory Preference Optimization (XPO)
XPO enjoys the strongest known provable guarantees and promising empirical performance.
arXiv Detail & Related papers (2024-05-31T17:39:06Z) - DPO Meets PPO: Reinforced Token Optimization for RLHF [36.97894955691627]
We introduce a framework that models RLHF problems as a Markov decision process (MDP)
Under this framework, we introduce an algorithm, dubbed as Reinforced Token Optimization (textttRTO), which learns the token-wise reward function from preference data.
For its practical implementation, textttRTO innovatively integrates Direct Preference Optimization (DPO) and Proximal Policy Optimization.
arXiv Detail & Related papers (2024-04-29T17:58:30Z) - From $r$ to $Q^*$: Your Language Model is Secretly a Q-Function [50.812404038684505]
We show that we can derive DPO in the token-level MDP as a general inverse Q-learning algorithm, which satisfies the Bellman equation.
We discuss applications of our work, including information elicitation in multi-turn dialogue, reasoning, agentic applications and end-to-end training of multi-model systems.
arXiv Detail & Related papers (2024-04-18T17:37:02Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - Fine-Tuning Language Models with Advantage-Induced Policy Alignment [80.96507425217472]
We propose a novel algorithm for aligning large language models to human preferences.
We show that it consistently outperforms PPO in language tasks by a large margin.
We also provide a theoretical justification supporting the design of our loss function.
arXiv Detail & Related papers (2023-06-04T01:59:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.