GRS-QA -- Graph Reasoning-Structured Question Answering Dataset
- URL: http://arxiv.org/abs/2411.00369v3
- Date: Fri, 08 Nov 2024 03:09:37 GMT
- Title: GRS-QA -- Graph Reasoning-Structured Question Answering Dataset
- Authors: Anish Pahilajani, Devasha Trivedi, Jincen Shuai, Khin S. Yone, Samyak Rajesh Jain, Namyong Park, Ryan A. Rossi, Nesreen K. Ahmed, Franck Dernoncourt, Yu Wang,
- Abstract summary: We introduce the Graph Reasoning-Structured Question Answering dataset (GRS-QA), which includes both semantic contexts and reasoning structures for QA pairs.
Unlike existing M-QA datasets, GRS-QA explicitly captures intricate reasoning pathways by constructing reasoning graphs.
Our empirical analysis reveals that LLMs perform differently when handling questions with varying reasoning structures.
- Score: 50.223851616680754
- License:
- Abstract: Large Language Models (LLMs) have excelled in multi-hop question-answering (M-QA) due to their advanced reasoning abilities. However, the impact of the inherent reasoning structures on LLM M-QA performance remains unclear, largely due to the absence of QA datasets that provide fine-grained reasoning structures. To address this gap, we introduce the Graph Reasoning-Structured Question Answering Dataset (GRS-QA), which includes both semantic contexts and reasoning structures for QA pairs. Unlike existing M-QA datasets, where different reasoning structures are entangled together, GRS-QA explicitly captures intricate reasoning pathways by constructing reasoning graphs, where nodes represent textual contexts and edges denote logical flows. These reasoning graphs of different structures enable a fine-grained evaluation of LLM reasoning capabilities across various reasoning structures. Our empirical analysis reveals that LLMs perform differently when handling questions with varying reasoning structures. This finding facilitates the exploration of textual structures as compared with semantics.
Related papers
- Aggregation of Reasoning: A Hierarchical Framework for Enhancing Answer Selection in Large Language Models [84.15513004135576]
Current research enhances the reasoning performance of Large Language Models (LLMs) by sampling multiple reasoning chains and ensembling based on the answer frequency.
This approach fails in scenarios where the correct answers are in the minority.
We introduce a hierarchical reasoning aggregation framework AoR, which selects answers based on the evaluation of reasoning chains.
arXiv Detail & Related papers (2024-05-21T17:12:19Z) - keqing: knowledge-based question answering is a nature chain-of-thought
mentor of LLM [27.76205400533089]
Large language models (LLMs) have exhibited remarkable performance on various natural language processing (NLP) tasks, especially for question answering.
We present a novel framework to assist LLMs, such as ChatGPT, to retrieve question-related structured information on the knowledge graph.
The experimental results on KBQA datasets show that Keqing can achieve competitive performance and illustrate the logic of answering each question.
arXiv Detail & Related papers (2023-12-31T08:39:04Z) - Leveraging Structured Information for Explainable Multi-hop Question
Answering and Reasoning [14.219239732584368]
In this work, we investigate constructing and leveraging extracted semantic structures (graphs) for multi-hop question answering.
Empirical results and human evaluations show that our framework: generates more faithful reasoning chains and substantially improves the QA performance on two benchmark datasets.
arXiv Detail & Related papers (2023-11-07T05:32:39Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
We propose a holistic graph network (HGN) which deals with context at both discourse level and word level, as the basis for logical reasoning.
Specifically, node-level and type-level relations, which can be interpreted as bridges in the reasoning process, are modeled by a hierarchical interaction mechanism.
arXiv Detail & Related papers (2023-06-21T07:34:27Z) - Query Structure Modeling for Inductive Logical Reasoning Over Knowledge
Graphs [67.043747188954]
We propose a structure-modeled textual encoding framework for inductive logical reasoning over KGs.
It encodes linearized query structures and entities using pre-trained language models to find answers.
We conduct experiments on two inductive logical reasoning datasets and three transductive datasets.
arXiv Detail & Related papers (2023-05-23T01:25:29Z) - Unifying Structure Reasoning and Language Model Pre-training for Complex
Reasoning [26.811507121199323]
This paper proposes a unified learning framework that combines explicit structure reasoning and language pre-training to endow PLMs with the structure reasoning skill.
It first identifies several elementary structures within contexts to construct structured queries and performs step-by-step reasoning along the queries to identify the answer entity.
Experimental results on four datasets demonstrate that the proposed model achieves significant improvements in complex reasoning tasks involving diverse structures.
arXiv Detail & Related papers (2023-01-21T08:18:11Z) - Discourse-Aware Graph Networks for Textual Logical Reasoning [142.0097357999134]
Passage-level logical relations represent entailment or contradiction between propositional units (e.g., a concluding sentence)
We propose logic structural-constraint modeling to solve the logical reasoning QA and introduce discourse-aware graph networks (DAGNs)
The networks first construct logic graphs leveraging in-line discourse connectives and generic logic theories, then learn logic representations by end-to-end evolving the logic relations with an edge-reasoning mechanism and updating the graph features.
arXiv Detail & Related papers (2022-07-04T14:38:49Z) - VQA-LOL: Visual Question Answering under the Lens of Logic [58.30291671877342]
We investigate whether visual question answering systems trained to answer a question about an image, are able to answer the logical composition of multiple such questions.
We construct an augmentation of the VQA dataset as a benchmark, with questions containing logical compositions and linguistic transformations.
We propose our Lens of Logic (LOL) model which uses question-attention and logic-attention to understand logical connectives in the question, and a novel Fr'echet-Compatibility Loss.
arXiv Detail & Related papers (2020-02-19T17:57:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.