論文の概要: Multi Modal Information Fusion of Acoustic and Linguistic Data for Decoding Dairy Cow Vocalizations in Animal Welfare Assessment
- arxiv url: http://arxiv.org/abs/2411.00477v1
- Date: Fri, 01 Nov 2024 09:48:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 21:28:00.087887
- Title: Multi Modal Information Fusion of Acoustic and Linguistic Data for Decoding Dairy Cow Vocalizations in Animal Welfare Assessment
- Title(参考訳): 動物福祉評価における乳牛音声の復号化のための音響・言語データのマルチモーダル情報融合
- Authors: Bubacarr Jobarteh, Madalina Mincu, Gavojdian Dinu, Suresh Neethirajan,
- Abstract要約: 本研究では,マルチモーダルデータ融合技術を用いて乳牛の接触呼をデコードすることを目的とする。
本研究では,自然言語処理モデルを用いて,牛の発声音声の音声記録を書式に転写する。
発声は、苦痛や覚醒に関連する高頻度通話と、満足感や落ち着きに関連する低頻度通話に分類した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Understanding animal vocalizations through multi-source data fusion is crucial for assessing emotional states and enhancing animal welfare in precision livestock farming. This study aims to decode dairy cow contact calls by employing multi-modal data fusion techniques, integrating transcription, semantic analysis, contextual and emotional assessment, and acoustic feature extraction. We utilized the Natural Language Processing model to transcribe audio recordings of cow vocalizations into written form. By fusing multiple acoustic features frequency, duration, and intensity with transcribed textual data, we developed a comprehensive representation of cow vocalizations. Utilizing data fusion within a custom-developed ontology, we categorized vocalizations into high frequency calls associated with distress or arousal, and low frequency calls linked to contentment or calmness. Analyzing the fused multi dimensional data, we identified anxiety related features indicative of emotional distress, including specific frequency measurements and sound spectrum results. Assessing the sentiment and acoustic features of vocalizations from 20 individual cows allowed us to determine differences in calling patterns and emotional states. Employing advanced machine learning algorithms, Random Forest, Support Vector Machine, and Recurrent Neural Networks, we effectively processed and fused multi-source data to classify cow vocalizations. These models were optimized to handle computational demands and data quality challenges inherent in practical farm environments. Our findings demonstrate the effectiveness of multi-source data fusion and intelligent processing techniques in animal welfare monitoring. This study represents a significant advancement in animal welfare assessment, highlighting the role of innovative fusion technologies in understanding and improving the emotional wellbeing of dairy cows.
- Abstract(参考訳): マルチソースデータ融合による動物の声化の理解は、正確な家畜養殖における感情状態の評価と動物福祉の向上に不可欠である。
本研究の目的は,乳牛の接触呼をマルチモーダルデータ融合技術を用いて復号し,書き起こし,意味分析,文脈的・感情的評価,音響的特徴抽出などを統合することである。
そこで我々は,自然言語処理モデルを用いて,牛の発声音声の音声記録を書式に書き起こした。
音声の周波数, 持続時間, 強度をテキストデータと融合させることで, 牛の発声を包括的に表現する手法を開発した。
特化オントロジーにおけるデータ融合を利用して,声の発声を,苦痛や覚醒に関連する高周波呼び出し,満足感や落ち着きに関連する低周波呼び出しに分類した。
融合した多次元データを解析し、特定の周波数測定や音響スペクトル結果を含む感情的苦痛を示す不安に関連する特徴を同定した。
20頭の牛の発声の感情と音響的特徴を評価することで,鳴き声のパターンや感情状態の違いを判別することができた。
高度な機械学習アルゴリズム、ランダムフォレスト、サポートベクトルマシン、リカレントニューラルネットワークを用いて、牛の発声を分類するために複数のソースデータを効果的に処理し、融合した。
これらのモデルは、実用的な農業環境に固有の計算要求とデータ品質の問題に対処するために最適化された。
動物福祉モニタリングにおけるマルチソースデータ融合とインテリジェント処理技術の有効性を実証した。
本研究は,動物福祉評価において,乳牛の感情的幸福感の理解と改善におけるイノベーティブフュージョン技術の役割を浮き彫りにした。
関連論文リスト
- Feature Representations for Automatic Meerkat Vocalization Classification [15.642602544201308]
本稿では,自動メエルカット発声解析のための特徴表現について検討する。
2つのデータセットを対象としたコールタイプ分類研究により、人間の音声処理のために開発された特徴抽出法が、自動メエルカット呼分析に効果的に活用できることが明らかになった。
論文 参考訳(メタデータ) (2024-08-27T10:51:51Z) - On the Utility of Speech and Audio Foundation Models for Marmoset Call Analysis [19.205671029694074]
本研究は,4,8,16kHzの事前学習帯域において,音声領域と一般音声領域から派生した特徴表現をマーモセットコールタイプおよび発信者分類タスクに対して評価する。
その結果、より高い帯域幅を持つモデルでは性能が向上し、音声や一般音声での事前学習では同等の結果が得られ、スペクトルベースラインよりも改善されることがわかった。
論文 参考訳(メタデータ) (2024-07-23T12:00:44Z) - WhaleNet: a Novel Deep Learning Architecture for Marine Mammals Vocalizations on Watkins Marine Mammal Sound Database [49.1574468325115]
textbfWhaleNet (Wavelet Highly Adaptive Learning Ensemble Network) は海洋哺乳動物の発声を分類するための高度な深層アンサンブルアーキテクチャである。
既存のアーキテクチャよりも8-10%の精度で分類精度を向上し、分類精度は9,7.61%である。
論文 参考訳(メタデータ) (2024-02-20T11:36:23Z) - It's Never Too Late: Fusing Acoustic Information into Large Language
Models for Automatic Speech Recognition [70.77292069313154]
大規模言語モデル(LLM)は、自動音声認識(ASR)出力の上の生成誤り訂正(GER)に成功することができる。
本研究では,不確実性認識ダイナミックフュージョン (UADF) と呼ばれる新しい遅延融合解によって予測された転写を生成する前に,音響情報を注入することにより,そのような制限を克服することを目的とする。
論文 参考訳(メタデータ) (2024-02-08T07:21:45Z) - EXPRESSO: A Benchmark and Analysis of Discrete Expressive Speech
Resynthesis [49.04496602282718]
テキストなし音声合成のための高品質な表現型音声データセットであるExpressoを紹介する。
このデータセットは、26の自発的表現スタイルで描画された読み上げ音声と即興対話の両方を含む。
自己監督型離散エンコーダの自動計測値を用いて再生品質を評価する。
論文 参考訳(メタデータ) (2023-08-10T17:41:19Z) - Transferable Models for Bioacoustics with Human Language Supervision [0.0]
BioLingualは、対照的な言語-オーディオ事前学習に基づくバイオ音響学の新しいモデルである。
分類群にまたがる1000種以上の呼び出しを識別し、完全なバイオ音響タスクをゼロショットで実行し、自然のテキストクエリから動物の発声記録を検索する。
論文 参考訳(メタデータ) (2023-08-09T14:22:18Z) - BovineTalk: Machine Learning for Vocalization Analysis of Dairy Cattle
under Negative Affective States [0.09786690381850353]
牛は口を閉じた,あるいは部分的に閉じた,近距離接触のための低周波発声 (LF) と遠距離通信のための高周波発声 (HF) の2種類の発声を行った。
本稿では,深層学習と説明可能な機械学習,高頻度および低周波の牛の鳴き声の分類,および個別の牛の音声認識の2つの計算フレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-26T07:07:03Z) - Improved Speech Emotion Recognition using Transfer Learning and
Spectrogram Augmentation [56.264157127549446]
音声感情認識(SER)は、人間とコンピュータの相互作用において重要な役割を果たす課題である。
SERの主な課題の1つは、データの不足である。
本稿では,スペクトログラム拡張と併用した移動学習戦略を提案する。
論文 参考訳(メタデータ) (2021-08-05T10:39:39Z) - Cetacean Translation Initiative: a roadmap to deciphering the
communication of sperm whales [97.41394631426678]
最近の研究では、非ヒト種における音響コミュニケーションを分析するための機械学習ツールの約束を示した。
マッコウクジラの大量生物音響データの収集と処理に必要な重要な要素について概説する。
開発された技術能力は、非人間コミュニケーションと動物行動研究を研究する幅広いコミュニティにおいて、クロス応用と進歩をもたらす可能性が高い。
論文 参考訳(メタデータ) (2021-04-17T18:39:22Z) - An Overview of Deep-Learning-Based Audio-Visual Speech Enhancement and
Separation [57.68765353264689]
音声強調と音声分離は関連する2つの課題である。
伝統的に、これらのタスクは信号処理と機械学習技術を使って取り組まれてきた。
ディープラーニングは強力なパフォーマンスを達成するために利用されています。
論文 参考訳(メタデータ) (2020-08-21T17:24:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。