論文の概要: Exploring the Precise Dynamics of Single-Layer GAN Models: Leveraging Multi-Feature Discriminators for High-Dimensional Subspace Learning
- arxiv url: http://arxiv.org/abs/2411.00498v1
- Date: Fri, 01 Nov 2024 10:21:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:44:16.074299
- Title: Exploring the Precise Dynamics of Single-Layer GAN Models: Leveraging Multi-Feature Discriminators for High-Dimensional Subspace Learning
- Title(参考訳): 単層GANモデルの高精度ダイナミクスの探索:高次元部分空間学習のための多機能判別器の活用
- Authors: Andrew Bond, Zafer Dogan,
- Abstract要約: サブスペース学習の観点から,単層GANモデルのトレーニングダイナミクスについて検討する。
解析をサブスペース学習の領域にブリッジすることで,従来の手法と比較してGAN法の有効性を体系的に比較する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Subspace learning is a critical endeavor in contemporary machine learning, particularly given the vast dimensions of modern datasets. In this study, we delve into the training dynamics of a single-layer GAN model from the perspective of subspace learning, framing these GANs as a novel approach to this fundamental task. Through a rigorous scaling limit analysis, we offer insights into the behavior of this model. Extending beyond prior research that primarily focused on sequential feature learning, we investigate the non-sequential scenario, emphasizing the pivotal role of inter-feature interactions in expediting training and enhancing performance, particularly with an uninformed initialization strategy. Our investigation encompasses both synthetic and real-world datasets, such as MNIST and Olivetti Faces, demonstrating the robustness and applicability of our findings to practical scenarios. By bridging our analysis to the realm of subspace learning, we systematically compare the efficacy of GAN-based methods against conventional approaches, both theoretically and empirically. Notably, our results unveil that while all methodologies successfully capture the underlying subspace, GANs exhibit a remarkable capability to acquire a more informative basis, owing to their intrinsic ability to generate new data samples. This elucidates the unique advantage of GAN-based approaches in subspace learning tasks.
- Abstract(参考訳): サブスペース・ラーニングは現代の機械学習において重要な取り組みであり、特に現代のデータセットの膨大な次元を考慮に入れている。
本研究では,この基本課題に対する新しいアプローチとして,サブスペース学習の観点から,単層GANモデルのトレーニング力学を探求する。
厳密なスケーリング制限分析を通じて、このモデルの振る舞いに関する洞察を提供する。
逐次的特徴学習を主眼とする先行研究を超えて、我々は、特にインフォームド初期化戦略を用いて、訓練の迅速化と性能向上における機能間相互作用の重要な役割を強調し、非逐次シナリオを調査した。
我々の研究は、MNISTやOlivetti Facesのような合成および実世界のデータセットの両方を包含し、我々の発見の堅牢性と実用シナリオへの適用性を実証している。
解析をサブスペース学習の領域にブリッジすることで、理論上も経験的にも、従来のアプローチに対するGANベースの手法の有効性を体系的に比較する。
特に,本研究の結果は,すべての手法が基盤となる部分空間を捉えることに成功しているのに対して,新たなデータサンプルを生成する本質的な能力から,より情報的な基盤を得るための優れた能力を示すことが明らかとなった。
これにより、サブスペース学習タスクにおけるGANベースのアプローチの独特な利点が解明される。
関連論文リスト
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
その驚くべき振る舞いをより深く理解するために、トレーニングされたニューラルネットワークの単純かつ正確なモデルの有用性について検討する。
3つのケーススタディで、様々な顕著な現象に関する新しい経験的洞察を導き出すためにどのように適用できるかを説明します。
論文 参考訳(メタデータ) (2024-10-31T22:54:34Z) - Self-Supervised Skeleton-Based Action Representation Learning: A Benchmark and Beyond [19.074841631219233]
自己教師付き学習(SSL)は骨格に基づく行動理解に有効であることが証明されている。
本稿では,自己教師型骨格に基づく行動表現学習に関する包括的調査を行う。
論文 参考訳(メタデータ) (2024-06-05T06:21:54Z) - Active Learning of Dynamics Using Prior Domain Knowledge in the Sampling Process [18.406992961818368]
本稿では,事前知識をサンプリングプロセスに明示的に組み込むことで,側面情報を活用する動的学習のための能動的学習アルゴリズムを提案する。
提案アルゴリズムは,観測データと側情報から導出される力学の非完全先行モデルとの間に高い経験的差を示す領域への探索を導く。
我々は,我々の能動学習アルゴリズムが,最大予測分散に対する明確な収束率を提供することで,基礎となる力学の一貫性のある推定値が得られることを厳密に証明する。
論文 参考訳(メタデータ) (2024-03-25T22:20:45Z) - A Bayesian Unification of Self-Supervised Clustering and Energy-Based
Models [11.007541337967027]
我々は、最先端の自己教師型学習目標のベイズ分析を行う。
目的関数が既存の自己教師型学習戦略より優れていることを示す。
また、GEDIをニューロシンボリックな枠組みに統合できることを実証した。
論文 参考訳(メタデータ) (2023-12-30T04:46:16Z) - Towards a General Framework for Continual Learning with Pre-training [55.88910947643436]
本稿では,事前学習を用いた逐次到着タスクの連続学習のための一般的な枠組みを提案する。
我々はその目的を,タスク内予測,タスク同一性推論,タスク適応予測という3つの階層的構成要素に分解する。
本稿では,パラメータ効率細調整(PEFT)技術と表現統計量を用いて,これらのコンポーネントを明示的に最適化する革新的な手法を提案する。
論文 参考訳(メタデータ) (2023-10-21T02:03:38Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
学び アクティブラーニング(LAL)は、アクティブラーニング戦略自体を学ぶことを提案し、与えられた設定に適応できるようにする。
能動学習問題の対称性と独立性を利用した新しい分類法を提案する。
私たちのアプローチは、筋電図から学ぶことに基づいており、モデルに標準ではない目的に適応する能力を与えます。
論文 参考訳(メタデータ) (2023-09-11T14:16:37Z) - A Survey on Few-Shot Class-Incremental Learning [11.68962265057818]
FSCIL(Few-shot class-incremental Learning)は、ディープニューラルネットワークが新しいタスクを学習する上で重要な課題である。
本稿では, FSCILに関する包括的調査を行う。
FSCILはコンピュータビジョンの様々な分野で大きな成果を上げている。
論文 参考訳(メタデータ) (2023-04-17T10:15:08Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
視覚力学モデリングのための新しい連続学習手法を提案し,その視覚制御と予測における有効性について検討する。
まず,タスク固有のダイナミクスをガウスの混合で学習する混合世界モデルを提案し,その上で,破滅的な忘れを克服するための新たなトレーニング戦略を提案する。
我々のモデルは,DeepMind Control と Meta-World のベンチマークにおいて,既存の連続的学習アルゴリズムと視覚的RLアルゴリズムの単純な組み合わせよりも優れている。
論文 参考訳(メタデータ) (2023-03-12T05:08:03Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。