論文の概要: Cross-modal semantic segmentation for indoor environmental perception using single-chip millimeter-wave radar raw data
- arxiv url: http://arxiv.org/abs/2411.00499v1
- Date: Fri, 01 Nov 2024 10:25:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:48:49.327717
- Title: Cross-modal semantic segmentation for indoor environmental perception using single-chip millimeter-wave radar raw data
- Title(参考訳): 単一チップミリ波レーダ生データを用いた屋内環境認識のためのクロスモーダルセマンティックセマンティックセマンティックセマンティクス
- Authors: Hairuo Hu, Haiyong Cong, Zhuyu Shao, Yubo Bi, Jinghao Liu,
- Abstract要約: 室内環境認識のための単一チップミリ波レーダ(mmWave)を用いたクロスモーダルセマンティックセマンティックセマンティクスモデルを提案する。
高品質なラベルを効率よく取得するために、LiDAR点雲と占有グリッドマップを用いた自動ラベル生成方法を導入する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In the context of firefighting and rescue operations, a cross-modal semantic segmentation model based on a single-chip millimeter-wave (mmWave) radar for indoor environmental perception is proposed and discussed. To efficiently obtain high-quality labels, an automatic label generation method utilizing LiDAR point clouds and occupancy grid maps is introduced. The proposed segmentation model is based on U-Net. A spatial attention module is incorporated, which enhanced the performance of the mode. The results demonstrate that cross-modal semantic segmentation provides a more intuitive and accurate representation of indoor environments. Unlike traditional methods, the model's segmentation performance is minimally affected by azimuth. Although performance declines with increasing distance, this can be mitigated by a well-designed model. Additionally, it was found that using raw ADC data as input is ineffective; compared to RA tensors, RD tensors are more suitable for the proposed model.
- Abstract(参考訳): 消火・救助活動において,屋内環境認識のための単一チップミリ波レーダ(mmWave)を用いたクロスモーダルセマンティックセマンティックセマンティクスモデルを提案する。
高品質なラベルを効率よく取得するために、LiDAR点雲と占有グリッドマップを用いた自動ラベル生成方法を導入する。
提案するセグメンテーションモデルはU-Netに基づいている。
空間的注意モジュールが組み込まれ、モードの性能が向上する。
その結果、モーダルなセマンティックセグメンテーションにより、屋内環境をより直感的で正確に表現できることが示されている。
従来の手法とは異なり、モデルのセグメンテーション性能は方位の影響を最小限に抑える。
距離が大きくなるにつれて性能は低下するが、これはよく設計されたモデルによって緩和することができる。
さらに、RAテンソルと比較してRDテンソルの方が提案モデルに適していることが判明した。
関連論文リスト
- SatDM: Synthesizing Realistic Satellite Image with Semantic Layout
Conditioning using Diffusion Models [0.0]
Denoising Diffusion Probabilistic Models (DDPM) は意味的レイアウトから現実的なイメージを合成する上で大きな可能性を証明している。
本稿では,セマンティックマップを用いて高品質で多様な衛星画像を生成する条件付きDDPMモデルを提案する。
提案モデルの有効性は,本研究の文脈内で導入した詳細なラベル付きデータセットを用いて検証する。
論文 参考訳(メタデータ) (2023-09-28T19:39:13Z) - Concurrent Misclassification and Out-of-Distribution Detection for
Semantic Segmentation via Energy-Based Normalizing Flow [0.0]
最近のセマンティックセグメンテーションモデルは、トレーニングデータセットの分布に類似したテスト時間例を正確に分類する。
本稿では,正規化フローフレームワークに依存するIDMとOOD検出を同時に行うための生成モデルを提案する。
FlowEneDetは、事前トレーニングされたDeepLabV3+およびSegFormerセマンティックセグメンテーションモデルに適用した場合、IDM/OOD検出におけるCityscapes、Cityscapes-C、FishyScapes、SegmentMeIfYouCanベンチマークの有望な結果を達成する。
論文 参考訳(メタデータ) (2023-05-16T17:02:57Z) - Human Semantic Segmentation using Millimeter-Wave Radar Sparse Point
Clouds [3.3888257250564364]
本稿では,ミリ波レーダの粗い逐次点雲のセマンティックセグメンテーションのためのフレームワークを提案する。
mmWaveデータの空間的特徴と時間的トポロジ的特徴は依然として問題である。
グラフ構造とトポロジ的特徴をポイントクラウドに導入し,セマンティックセグメンテーションフレームワークを提案する。
我々のモデルは、$mathbf82.31%$でカスタムデータセットの平均精度を達成し、最先端のアルゴリズムより優れている。
論文 参考訳(メタデータ) (2023-04-27T12:28:06Z) - Semantic Diffusion Network for Semantic Segmentation [1.933681537640272]
セマンティック境界認識を強化する演算子レベルのアプローチを導入する。
意味拡散ネットワーク(SDN)と呼ばれる新しい学習可能なアプローチを提案する。
我々のSDNは、元の機能からクラス間境界強化機能への微分可能なマッピングを構築することを目的としています。
論文 参考訳(メタデータ) (2023-02-04T01:39:16Z) - Benchmarking the Robustness of LiDAR Semantic Segmentation Models [78.6597530416523]
本稿では,LiDARセマンティックセグメンテーションモデルのロバスト性を,様々な汚職の下で包括的に解析することを目的とする。
本稿では,悪天候,計測ノイズ,デバイス間不一致という3つのグループで16のドメイン外LiDAR破損を特徴とするSemanticKITTI-Cというベンチマークを提案する。
我々は、単純だが効果的な修正によってロバスト性を大幅に向上させるロバストLiDARセグメンテーションモデル(RLSeg)を設計する。
論文 参考訳(メタデータ) (2023-01-03T06:47:31Z) - Prompt Tuning for Parameter-efficient Medical Image Segmentation [79.09285179181225]
2つの医用画像データセットのセマンティックセグメンテーションにパラメータ効率が良いが効果的な適応を実現するために,いくつかのコントリビューションを提案し,検討する。
我々はこのアーキテクチャを、オンライン生成プロトタイプへの割り当てに基づく専用密集型セルフスーパービジョンスキームで事前訓練する。
得られたニューラルネットワークモデルにより、完全に微調整されたモデルとパラメータに適応したモデルとのギャップを緩和できることを実証する。
論文 参考訳(メタデータ) (2022-11-16T21:55:05Z) - LESS: Label-Efficient Semantic Segmentation for LiDAR Point Clouds [62.49198183539889]
我々は,LiDAR点雲を用いた屋外シーンのためのラベル効率のよいセマンティックセマンティックセマンティクスパイプラインを提案する。
本手法は,半弱教師付き学習を用いて,効率的なラベリング手法を設計する。
提案手法は,100%ラベル付き完全教師付き手法と比較して,さらに競争力が高い。
論文 参考訳(メタデータ) (2022-10-14T19:13:36Z) - PCSCNet: Fast 3D Semantic Segmentation of LiDAR Point Cloud for
Autonomous Car using Point Convolution and Sparse Convolution Network [8.959391124399925]
ポイント・コンボリューションと3次元スパース・コンボリューション(PCSCNet)を用いた高速なボクセル・セマンティック・セマンティック・セマンティック・セマンティック・セマンティクスモデルを提案する。
提案モデルは,点畳み込みに基づく特徴抽出を用いて,高ボクセル分解能と低ボクセル分解能を両立させるように設計されている。
論文 参考訳(メタデータ) (2022-02-21T08:31:37Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
我々は、アウト・オブ・ディストリビューション(OOD)インプットと敵攻撃(AA)を検出する新しい手法であるDAINを導入する。
本手法は,ニューラルネットワークの内部動作を監視し,活性化分布の密度推定器を学習する。
当社のモデルは,特別なアクセラレータを必要とせずに,効率的な計算とデプロイが可能な単一のGPUでトレーニングすることが可能です。
論文 参考訳(メタデータ) (2021-05-30T22:07:13Z) - Channelized Axial Attention for Semantic Segmentation [70.14921019774793]
チャネルアキシャルアテンション(CAA)を提案し、チャネルアテンションと軸アテンションをシームレスに統合し、計算複雑性を低減します。
私たちのCAAは、DANetのような他の注意モデルに比べて計算リソースをはるかに少なくするだけでなく、すべての検証済みデータセット上で最先端のResNet-101ベースのセグメンテーションモデルよりも優れています。
論文 参考訳(メタデータ) (2021-01-19T03:08:03Z) - Self-Guided Adaptation: Progressive Representation Alignment for Domain
Adaptive Object Detection [86.69077525494106]
非教師なしドメイン適応(UDA)は、オブジェクト検出モデルのドメイン間ロバスト性を改善するために前例のない成功を収めた。
既存のUDA手法は、モデル学習中の瞬間的なデータ分布を無視しており、大きなドメインシフトによって特徴表現が劣化する可能性がある。
本稿では、特徴表現の整合とドメイン間のオブジェクト検出モデルの転送を目標とする自己ガイド適応モデルを提案する。
論文 参考訳(メタデータ) (2020-03-19T13:30:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。