論文の概要: Machine Learning-Accelerated Multi-Objective Design of Fractured Geothermal Systems
- arxiv url: http://arxiv.org/abs/2411.00504v1
- Date: Fri, 01 Nov 2024 10:39:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:48:35.027702
- Title: Machine Learning-Accelerated Multi-Objective Design of Fractured Geothermal Systems
- Title(参考訳): フラクチャード地熱系の機械学習高速化多目的設計
- Authors: Guodong Chen, Jiu Jimmy Jiao, Qiqi Liu, Zhongzheng Wang, Yaochu Jin,
- Abstract要約: 本稿では, フラクチャードメディアにおける熱水シミュレーションと統合した, 能動学習による進化的多目的最適化アルゴリズムについて報告する。
ALEMO法は従来の進化法に比べて1~2桁の速度(10~100倍)で、必要なシミュレーションを著しく削減することを示した。
- 参考スコア(独自算出の注目度): 17.040963667188525
- License:
- Abstract: Multi-objective optimization has burgeoned as a potent methodology for informed decision-making in enhanced geothermal systems, aiming to concurrently maximize economic yield, ensure enduring geothermal energy provision, and curtail carbon emissions. However, addressing a multitude of design parameters inherent in computationally intensive physics-driven simulations constitutes a formidable impediment for geothermal design optimization, as well as across a broad range of scientific and engineering domains. Here we report an Active Learning enhanced Evolutionary Multi-objective Optimization algorithm, integrated with hydrothermal simulations in fractured media, to enable efficient optimization of fractured geothermal systems using few model evaluations. We introduce probabilistic neural network as classifier to learns to predict the Pareto dominance relationship between candidate samples and reference samples, thereby facilitating the identification of promising but uncertain offspring solutions. We then use active learning strategy to conduct hypervolume based attention subspace search with surrogate model by iteratively infilling informative samples within local promising parameter subspace. We demonstrate its effectiveness by conducting extensive experimental tests of the integrated framework, including multi-objective benchmark functions, a fractured geothermal model and a large-scale enhanced geothermal system. Results demonstrate that the ALEMO approach achieves a remarkable reduction in required simulations, with a speed-up of 1-2 orders of magnitude (10-100 times faster) than traditional evolutionary methods, thereby enabling accelerated decision-making. Our method is poised to advance the state-of-the-art of renewable geothermal energy system and enable widespread application to accelerate the discovery of optimal designs for complex systems.
- Abstract(参考訳): 多目的最適化は、高度化された地熱系における情報的意思決定のための強力な方法論として発展し、同時に経済利益を最大化し、持続的な地熱エネルギー供給を確保し、炭素排出量を削減しようとしている。
しかし、計算集約的な物理駆動シミュレーションに固有の多くの設計パラメータに対処することは、幅広い科学的・工学的な領域だけでなく、地熱設計の最適化にも強い障害となる。
本稿では, フラクチャード・メディアにおける熱水シミュレーションと統合した能動学習型進化的多目的最適化アルゴリズムについて述べる。
確率論的ニューラルネットワークを分類器として導入し、候補サンプルと参照サンプルとのパレート支配関係を予測し、将来性はあるが不確実な子孫解の同定を容易にする。
そこで我々は,局所的な有望パラメータ部分空間内に情報的サンプルを反復的に埋め込むことにより,ハイパーボリュームに基づく注意サブスペース探索を行う。
本研究では,多目的ベンチマーク関数,フラクチャード地熱モデル,大規模拡張地熱システムなど,統合フレームワークの広範な実験を行い,その有効性を示す。
その結果, ALEMO法は従来の進化的手法よりも1~2桁(10~100倍)の速さで, 必要なシミュレーションの大幅な削減を実現し, 意思決定の高速化を実現している。
本手法は, 再生可能地熱エネルギーシステムの現状を推し進め, 複雑なシステムに対する最適設計の発見を加速するための広範な応用を可能にする。
関連論文リスト
- Accelerate Neural Subspace-Based Reduced-Order Solver of Deformable Simulation by Lipschitz Optimization [9.364019847856714]
高DOFで物理シミュレーションを高速化する新しい手法として,低次シミュレーションがある。
本稿では,最適化された部分空間マッピングの探索手法を提案する。
準静的シミュレーションと動的シミュレーションの両方において,本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-09-05T12:56:03Z) - Dynamic Kernel-Based Adaptive Spatial Aggregation for Learned Image
Compression [63.56922682378755]
本稿では,空間アグリゲーション機能の拡張に焦点をあて,動的カーネルベースの変換符号化を提案する。
提案したアダプティブアグリゲーションはカーネルオフセットを生成し、コンテント条件付き範囲の有効な情報をキャプチャして変換を支援する。
実験により,本手法は,最先端の学習手法と比較して,3つのベンチマークにおいて高い速度歪み性能が得られることを示した。
論文 参考訳(メタデータ) (2023-08-17T01:34:51Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - Surrogate-assisted level-based learning evolutionary search for heat
extraction optimization of enhanced geothermal system [3.012067935276772]
地熱システムの強化は、持続的かつ長期的な地熱エネルギー供給と二酸化炭素排出量の削減に不可欠である。
改良された地熱系の熱抽出最適化のために,SLLES (Surrogate-assisted level-based learning evolution search algorithm) を提案する。
論文 参考訳(メタデータ) (2022-12-15T08:43:09Z) - Guaranteed Conservation of Momentum for Learning Particle-based Fluid
Dynamics [96.9177297872723]
本稿では,学習物理シミュレーションにおける線形運動量を保証する新しい手法を提案する。
我々は、強い制約で運動量の保存を強制し、反対称的な連続的な畳み込み層を通して実現する。
提案手法により,学習シミュレータの物理的精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2022-10-12T09:12:59Z) - Machine learning based surrogate models for microchannel heat sink
optimization [0.0]
本稿では,二次チャネルとリブを用いたマイクロチャネルの設計を計算流体力学を用いて検討する。
ラテンハイパーキューブサンプリング、機械学習に基づく代理モデリング、多目的最適化を組み合わせたワークフローを提案する。
論文 参考訳(メタデータ) (2022-08-20T13:49:11Z) - Deep learning based closed-loop optimization of geothermal reservoir
production [0.0]
本研究では,深部地熱貯留層を最適に制御するために,深部学習サロゲートに基づくクローズドループ最適化フレームワークを提案する。
我々は,畳み込みニューラルネットワーク(CNN)と長期記憶(LSTM)を組み合わせたハイブリッド畳み込み再帰型ニューラルネットワークサロゲートを構築した。
提案手法は, 地熱貯留層生産プロセスにおいて, 効率的かつ効率的なリアルタイム最適化とデータ同化を実現することができることを示す。
論文 参考訳(メタデータ) (2022-04-15T14:37:28Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process(INP)は、シミュレーションとアクティブな学習アプローチのためのディープラーニングフレームワークである。
能動的学習のために,NPベースモデルの潜時空間で計算された新しい取得関数Latent Information Gain (LIG)を提案する。
その結果,STNPは学習環境のベースラインを上回り,LIGは能動学習の最先端を達成していることがわかった。
論文 参考訳(メタデータ) (2021-06-05T01:31:51Z) - Partitioned Active Learning for Heterogeneous Systems [5.331649110169476]
本稿では,pgp(partitioned gp)モデルに基づく分断アクティブラーニング戦略を提案する。
グローバル検索は、アクティブラーニングの探索の側面を加速する。
ローカル検索は、ローカルGPモデルによって誘導されるアクティブ学習基準を利用する。
論文 参考訳(メタデータ) (2021-05-14T02:05:31Z) - Localized active learning of Gaussian process state space models [63.97366815968177]
多くの共通制御アプリケーションにおいて、優れた性能を達成するためには、グローバルに正確なモデルを必要としない。
本稿では,状態-作用空間の有界部分集合上の正確なモデルを得ることを目的としたガウス過程状態空間モデルに対する能動的学習戦略を提案する。
モデル予測制御を用いることで、探索中に収集した情報を統合し、探索戦略を適応的に改善する。
論文 参考訳(メタデータ) (2020-05-04T05:35:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。