$α$-TCVAE: On the relationship between Disentanglement and Diversity
- URL: http://arxiv.org/abs/2411.00588v1
- Date: Fri, 01 Nov 2024 13:50:06 GMT
- Title: $α$-TCVAE: On the relationship between Disentanglement and Diversity
- Authors: Cristian Meo, Louis Mahon, Anirudh Goyal, Justin Dauwels,
- Abstract summary: In this work, we introduce $alpha$-TCVAE, a variational autoencoder optimized using a novel total correlation (TC) lower bound.
We present quantitative analyses that support the idea that disentangled representations lead to better generative capabilities and diversity.
Our results demonstrate that $alpha$-TCVAE consistently learns more disentangled representations than baselines and generates more diverse observations.
- Score: 21.811889512977924
- License:
- Abstract: While disentangled representations have shown promise in generative modeling and representation learning, their downstream usefulness remains debated. Recent studies re-defined disentanglement through a formal connection to symmetries, emphasizing the ability to reduce latent domains and consequently enhance generative capabilities. However, from an information theory viewpoint, assigning a complex attribute to a specific latent variable may be infeasible, limiting the applicability of disentangled representations to simple datasets. In this work, we introduce $\alpha$-TCVAE, a variational autoencoder optimized using a novel total correlation (TC) lower bound that maximizes disentanglement and latent variables informativeness. The proposed TC bound is grounded in information theory constructs, generalizes the $\beta$-VAE lower bound, and can be reduced to a convex combination of the known variational information bottleneck (VIB) and conditional entropy bottleneck (CEB) terms. Moreover, we present quantitative analyses that support the idea that disentangled representations lead to better generative capabilities and diversity. Additionally, we perform downstream task experiments from both representation and RL domains to assess our questions from a broader ML perspective. Our results demonstrate that $\alpha$-TCVAE consistently learns more disentangled representations than baselines and generates more diverse observations without sacrificing visual fidelity. Notably, $\alpha$-TCVAE exhibits marked improvements on MPI3D-Real, the most realistic disentangled dataset in our study, confirming its ability to represent complex datasets when maximizing the informativeness of individual variables. Finally, testing the proposed model off-the-shelf on a state-of-the-art model-based RL agent, Director, significantly shows $\alpha$-TCVAE downstream usefulness on the loconav Ant Maze task.
Related papers
- Disentangled Representation Learning with Transmitted Information Bottleneck [57.22757813140418]
We present textbfDisTIB (textbfTransmitted textbfInformation textbfBottleneck for textbfDisd representation learning), a novel objective that navigates the balance between information compression and preservation.
arXiv Detail & Related papers (2023-11-03T03:18:40Z) - Sample-Efficient Linear Representation Learning from Non-IID Non-Isotropic Data [4.971690889257356]
We introduce an adaptation of the alternating minimization-descent scheme proposed by Collins and Nayer and Vaswani.
We show that vanilla alternating-minimization descent fails catastrophically even for iid, but mildly non-isotropic data.
Our analysis unifies and generalizes prior work, and provides a flexible framework for a wider range of applications.
arXiv Detail & Related papers (2023-08-08T17:56:20Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - Correlation Information Bottleneck: Towards Adapting Pretrained
Multimodal Models for Robust Visual Question Answering [63.87200781247364]
Correlation Information Bottleneck (CIB) seeks a tradeoff between compression and redundancy in representations.
We derive a tight theoretical upper bound for the mutual information between multimodal inputs and representations.
arXiv Detail & Related papers (2022-09-14T22:04:10Z) - Variational Distillation for Multi-View Learning [104.17551354374821]
We design several variational information bottlenecks to exploit two key characteristics for multi-view representation learning.
Under rigorously theoretical guarantee, our approach enables IB to grasp the intrinsic correlation between observations and semantic labels.
arXiv Detail & Related papers (2022-06-20T03:09:46Z) - Covariate-informed Representation Learning with Samplewise Optimal
Identifiable Variational Autoencoders [15.254297587065595]
Recently proposed identifiable variational autoencoder (iVAE) provides a promising approach for learning latent independent components of the data.
We develop a new approach, co-informed identifiable VAE (CI-iVAE)
In doing so, the objective function enforces the inverse relation, and learned representation contains more information of observations.
arXiv Detail & Related papers (2022-02-09T00:18:33Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
Variational Autoencoder (VAE) approximates the posterior of latent variables based on amortized variational inference.
We propose an alternative model, DU-VAE, for learning a more Diverse and less Uncertain latent space.
arXiv Detail & Related papers (2021-10-24T07:58:13Z) - Demystifying Inductive Biases for $\beta$-VAE Based Architectures [19.53632220171481]
We shed light on the inductive bias responsible for the success of VAE-based architectures.
We show that in classical datasets the structure of variance, induced by the generating factors, is conveniently aligned with the latent directions fostered by the VAE objective.
arXiv Detail & Related papers (2021-02-12T23:57:20Z) - Variational Mutual Information Maximization Framework for VAE Latent
Codes with Continuous and Discrete Priors [5.317548969642376]
Variational Autoencoder (VAE) is a scalable method for learning directed latent variable models of complex data.
We propose Variational Mutual Information Maximization Framework for VAE to address this issue.
arXiv Detail & Related papers (2020-06-02T09:05:51Z) - On the Difference Between the Information Bottleneck and the Deep
Information Bottleneck [81.89141311906552]
We revisit the Deep Variational Information Bottleneck and the assumptions needed for its derivation.
We show how to circumvent this limitation by optimising a lower bound for $I(T;Y)$ for which only the latter Markov chain has to be satisfied.
arXiv Detail & Related papers (2019-12-31T18:31:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.