Provably and Practically Efficient Adversarial Imitation Learning with General Function Approximation
- URL: http://arxiv.org/abs/2411.00610v1
- Date: Fri, 01 Nov 2024 14:17:38 GMT
- Title: Provably and Practically Efficient Adversarial Imitation Learning with General Function Approximation
- Authors: Tian Xu, Zhilong Zhang, Ruishuo Chen, Yihao Sun, Yang Yu,
- Abstract summary: We introduce a new method called optimization-based AIL (OPT-AIL)
OPT-AIL is the first provably efficient AIL method with general function approximation.
Empirical studies demonstrate that OPT-AIL outperforms previous state-of-the-art deep AIL methods in several challenging tasks.
- Score: 13.228240527941619
- License:
- Abstract: As a prominent category of imitation learning methods, adversarial imitation learning (AIL) has garnered significant practical success powered by neural network approximation. However, existing theoretical studies on AIL are primarily limited to simplified scenarios such as tabular and linear function approximation and involve complex algorithmic designs that hinder practical implementation, highlighting a gap between theory and practice. In this paper, we explore the theoretical underpinnings of online AIL with general function approximation. We introduce a new method called optimization-based AIL (OPT-AIL), which centers on performing online optimization for reward functions and optimism-regularized Bellman error minimization for Q-value functions. Theoretically, we prove that OPT-AIL achieves polynomial expert sample complexity and interaction complexity for learning near-expert policies. To our best knowledge, OPT-AIL is the first provably efficient AIL method with general function approximation. Practically, OPT-AIL only requires the approximate optimization of two objectives, thereby facilitating practical implementation. Empirical studies demonstrate that OPT-AIL outperforms previous state-of-the-art deep AIL methods in several challenging tasks.
Related papers
- Learning-to-Optimize with PAC-Bayesian Guarantees: Theoretical Considerations and Practical Implementation [4.239829789304117]
We use the PAC-Bayesian theory for the setting of learning-to-optimize.
We present the first framework to learn optimization algorithms with provable generalization guarantees.
Our learned algorithms provably outperform related ones derived from a (deterministic) worst-case analysis.
arXiv Detail & Related papers (2024-04-04T08:24:57Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Provable Reward-Agnostic Preference-Based Reinforcement Learning [61.39541986848391]
Preference-based Reinforcement Learning (PbRL) is a paradigm in which an RL agent learns to optimize a task using pair-wise preference-based feedback over trajectories.
We propose a theoretical reward-agnostic PbRL framework where exploratory trajectories that enable accurate learning of hidden reward functions are acquired.
arXiv Detail & Related papers (2023-05-29T15:00:09Z) - Provably Efficient Offline Goal-Conditioned Reinforcement Learning with
General Function Approximation and Single-Policy Concentrability [11.786486763236104]
Goal-conditioned reinforcement learning (GCRL) refers to learning general-purpose skills that aim to reach diverse goals.
offline GCRL only requires purely pre-collected datasets to perform training tasks.
We show that a modified offline GCRL algorithm is both provably efficient with general function approximation and single-policy concentrability.
arXiv Detail & Related papers (2023-02-07T22:04:55Z) - Scalable PAC-Bayesian Meta-Learning via the PAC-Optimal Hyper-Posterior:
From Theory to Practice [54.03076395748459]
A central question in the meta-learning literature is how to regularize to ensure generalization to unseen tasks.
We present a generalization bound for meta-learning, which was first derived by Rothfuss et al.
We provide a theoretical analysis and empirical case study under which conditions and to what extent these guarantees for meta-learning improve upon PAC-Bayesian per-task learning bounds.
arXiv Detail & Related papers (2022-11-14T08:51:04Z) - Offline Reinforcement Learning with Differentiable Function
Approximation is Provably Efficient [65.08966446962845]
offline reinforcement learning, which aims at optimizing decision-making strategies with historical data, has been extensively applied in real-life applications.
We take a step by considering offline reinforcement learning with differentiable function class approximation (DFA)
Most importantly, we show offline differentiable function approximation is provably efficient by analyzing the pessimistic fitted Q-learning algorithm.
arXiv Detail & Related papers (2022-10-03T07:59:42Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
This work proposes an exploration variant of the basic $Q$-learning protocol with linear function approximation.
We show that the performance of the algorithm degrades very gracefully under a novel and more permissive notion of approximation error.
arXiv Detail & Related papers (2022-06-01T23:26:51Z) - On Computation and Generalization of Generative Adversarial Imitation
Learning [134.17122587138897]
Generative Adversarial Learning (GAIL) is a powerful and practical approach for learning sequential decision-making policies.
This paper investigates the theoretical properties of GAIL.
arXiv Detail & Related papers (2020-01-09T00:40:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.