A graph-based approach to extracting narrative signals from public discourse
- URL: http://arxiv.org/abs/2411.00702v1
- Date: Fri, 01 Nov 2024 16:05:59 GMT
- Title: A graph-based approach to extracting narrative signals from public discourse
- Authors: Armin Pournaki, Tom Willaert,
- Abstract summary: We propose a graph-based formalism and machine-guided method for extracting, representing, and analyzing selected narrative signals.
We study political narratives that figure in texts from digital media such as archived political speeches, social media posts, political manifestos and transcripts of parliamentary debates.
- Score: 4.14360329494344
- License:
- Abstract: Narratives are key interpretative devices by which humans make sense of political reality. As the significance of narratives for understanding current societal issues such as polarization and misinformation becomes increasingly evident, there is a growing demand for methods that support their empirical analysis. To this end, we propose a graph-based formalism and machine-guided method for extracting, representing, and analyzing selected narrative signals from digital textual corpora, based on Abstract Meaning Representation (AMR). The formalism and method introduced here specifically cater to the study of political narratives that figure in texts from digital media such as archived political speeches, social media posts, political manifestos and transcripts of parliamentary debates. We conceptualize these political narratives as a type of ontological narratives: stories by which actors position themselves as political beings, and which are akin to political worldviews in which actors present their normative vision of the world, or aspects thereof. We approach the study of such political narratives as a problem of information retrieval: starting from a textual corpus, we first extract a graph-like representation of the meaning of each sentence in the corpus using AMR. Drawing on transferable concepts from narratology, we then apply a set of heuristics to filter these graphs for representations of 1) actors, 2) the events in which these actors figure, and 3) traces of the perspectivization of these events. We approach these references to actors, events, and instances of perspectivization as core narrative signals that initiate a further analysis by alluding to larger political narratives. By means of a case study of State of the European Union addresses, we demonstrate how the formalism can be used to inductively surface signals of political narratives from public discourse.
Related papers
- Mapping News Narratives Using LLMs and Narrative-Structured Text Embeddings [0.0]
We introduce a numerical narrative representation grounded in structuralist linguistic theory.
We extract the actants using an open-source LLM and integrate them into a Narrative-Structured Text Embedding.
We demonstrate the analytical insights of the method on the example of 5000 full-text news articles from Al Jazeera and The Washington Post on the Israel-Palestine conflict.
arXiv Detail & Related papers (2024-09-10T14:15:30Z) - Examining Political Rhetoric with Epistemic Stance Detection [13.829628375546568]
We develop a simple RoBERTa-based model for multi-source stance predictions that outperforms more complex state-of-the-art modeling.
We demonstrate its novel application to political science by conducting a large-scale analysis of the Mass Market Manifestos corpus of U.S. political opinion books.
arXiv Detail & Related papers (2022-12-29T23:47:14Z) - PAR: Political Actor Representation Learning with Social Context and
Expert Knowledge [45.215862050840116]
We propose textbfPAR, a textbfPolitical textbfActor textbfRepresentation learning framework.
We retrieve and extract factual statements about legislators to leverage social context information.
We then construct a heterogeneous information network to incorporate social context and use relational graph neural networks to learn legislator representations.
arXiv Detail & Related papers (2022-10-15T19:28:06Z) - KCD: Knowledge Walks and Textual Cues Enhanced Political Perspective
Detection in News Media [28.813287482918344]
We propose KCD, a political perspective detection approach to enable multi-hop knowledge reasoning.
Specifically, we generate random walks on external knowledge graphs and infuse them with news text representations.
We then construct a heterogeneous information network to jointly model news content as well as semantic, syntactic and entity cues in news articles.
arXiv Detail & Related papers (2022-04-08T13:06:09Z) - Discourse Analysis for Evaluating Coherence in Video Paragraph Captions [99.37090317971312]
We are exploring a novel discourse based framework to evaluate the coherence of video paragraphs.
Central to our approach is the discourse representation of videos, which helps in modeling coherence of paragraphs conditioned on coherence of videos.
Our experiment results have shown that the proposed framework evaluates coherence of video paragraphs significantly better than all the baseline methods.
arXiv Detail & Related papers (2022-01-17T04:23:08Z) - From Show to Tell: A Survey on Image Captioning [48.98681267347662]
Connecting Vision and Language plays an essential role in Generative Intelligence.
Research in image captioning has not reached a conclusive answer yet.
This work aims at providing a comprehensive overview and categorization of image captioning approaches.
arXiv Detail & Related papers (2021-07-14T18:00:54Z) - Political Posters Identification with Appearance-Text Fusion [49.55696202606098]
We propose a method that efficiently utilizes appearance features and text vectors to accurately classify political posters.
The majority of this work focuses on political posters that are designed to serve as a promotion of a certain political event.
arXiv Detail & Related papers (2020-12-19T16:14:51Z) - Narrative Maps: An Algorithmic Approach to Represent and Extract
Information Narratives [6.85316573653194]
This article combines the theory of narrative representations with the data from modern online systems.
A narrative map representation illustrates the events and stories in the narrative as a series of landmarks and routes on the map.
Our findings have implications for intelligence analysts, computational journalists, and misinformation researchers.
arXiv Detail & Related papers (2020-09-09T18:30:44Z) - A computational model implementing subjectivity with the 'Room Theory'.
The case of detecting Emotion from Text [68.8204255655161]
This work introduces a new method to consider subjectivity and general context dependency in text analysis.
By using similarity measure between words, we are able to extract the relative relevance of the elements in the benchmark.
This method could be applied to all the cases where evaluating subjectivity is relevant to understand the relative value or meaning of a text.
arXiv Detail & Related papers (2020-05-12T21:26:04Z) - Survey on Visual Sentiment Analysis [87.20223213370004]
This paper reviews pertinent publications and tries to present an exhaustive overview of the field of Visual Sentiment Analysis.
The paper also describes principles of design of general Visual Sentiment Analysis systems from three main points of view.
A formalization of the problem is discussed, considering different levels of granularity, as well as the components that can affect the sentiment toward an image in different ways.
arXiv Detail & Related papers (2020-04-24T10:15:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.