Quantum random access memory with transmon-controlled phonon routing
- URL: http://arxiv.org/abs/2411.00719v1
- Date: Fri, 01 Nov 2024 16:30:21 GMT
- Title: Quantum random access memory with transmon-controlled phonon routing
- Authors: Zhaoyou Wang, Hong Qiao, Andrew N. Cleland, Liang Jiang,
- Abstract summary: Quantum random access memory (QRAM) promises simultaneous data queries at multiple memory locations.
We introduce a transmon-controlled phonon router and propose a QRAM implementation by connecting these routers in a tree-like architecture.
- Score: 8.07618328909056
- License:
- Abstract: Quantum random access memory (QRAM) promises simultaneous data queries at multiple memory locations, with data retrieved in coherent superpositions, essential for achieving quantum speedup in many quantum algorithms. We introduce a transmon-controlled phonon router and propose a QRAM implementation by connecting these routers in a tree-like architecture. The router controls the motion of itinerant surface acoustic wave phonons based on the state of the control transmon, implementing the core functionality of conditional routing for QRAM. Our QRAM design is compact, supports fast routing operations, and avoids frequency crowding. Additionally, we propose a hybrid dual-rail encoding method to detect dominant loss errors without additional hardware, a versatile approach applicable to other QRAM platforms. Our estimates indicate that the proposed QRAM platform can achieve high heralding rates using current device parameters, with heralding fidelity primarily limited by transmon dephasing.
Related papers
- QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Hardware-Efficient Quantum Random Access Memory Design with a Native Gate Set on Superconducting Platforms [7.2616011434380665]
This paper presents a hardware-efficient native gate set iSCZ, C-iSCZ for implementing bucket-brigade QRAM on superconducting platforms.
The experimental feasibility of the proposed gate set is demonstrated, showing high fidelity and reduced complexity.
arXiv Detail & Related papers (2023-06-17T03:46:14Z) - Systems Architecture for Quantum Random Access Memory [0.6386668251980657]
Quantum random access memory (QRAM) is a promising architecture for realizing quantum queries.
We show how to leverage the intrinsic biased-noise resilience of the proposed QRAM for implementation on either Noisy Intermediate-Scale Quantum (NISQ) or Fault-Tolerant Quantum Computing (FTQC) hardware.
arXiv Detail & Related papers (2023-06-05T20:52:28Z) - Scaling Limits of Quantum Repeater Networks [62.75241407271626]
Quantum networks (QNs) are a promising platform for secure communications, enhanced sensing, and efficient distributed quantum computing.
Due to the fragile nature of quantum states, these networks face significant challenges in terms of scalability.
In this paper, the scaling limits of quantum repeater networks (QRNs) are analyzed.
arXiv Detail & Related papers (2023-05-15T14:57:01Z) - Multi-User Entanglement Distribution in Quantum Networks Using Multipath
Routing [55.2480439325792]
We propose three protocols that increase the entanglement rate of multi-user applications by leveraging multipath routing.
The protocols are evaluated on quantum networks with NISQ constraints, including limited quantum memories and probabilistic entanglement generation.
arXiv Detail & Related papers (2023-03-06T18:06:00Z) - Universal qudit gate synthesis for transmons [44.22241766275732]
We design a superconducting qudit-based quantum processor.
We propose a universal gate set featuring a two-qudit cross-resonance entangling gate.
We numerically demonstrate the synthesis of $rm SU(16)$ gates for noisy quantum hardware.
arXiv Detail & Related papers (2022-12-08T18:59:53Z) - Approximate Quantum Random Access Memory Architectures [7.509129971169722]
Quantum supremacy in many applications using well-known quantum algorithms rely on availability of data in quantum format.
We propose an approximate Parametric Quantum Circuit (PQC) based QRAM which takes address lines as input and gives out the corresponding data in these address lines as the output.
We present two applications of the proposed PQC-based QRAM namely, storage of binary data and storage of machine learning (ML) dataset for classification.
arXiv Detail & Related papers (2022-10-24T19:53:28Z) - Resource-efficient simulation of noisy quantum circuits and application
to network-enabled QRAM optimization [0.7107001348724662]
We introduce a resource-efficient method for simulating large-scale noisy entanglement.
We analyze Chen et al.'s network-based QRAM as an application at the scale of quantum data centers or near-term quantum internet.
arXiv Detail & Related papers (2022-10-24T18:00:05Z) - Extensible circuit-QED architecture via amplitude- and
frequency-variable microwaves [52.77024349608834]
We introduce a circuit-QED architecture combining fixed-frequency qubits and microwave-driven couplers.
Drive parameters appear as tunable knobs enabling selective two-qubit coupling and coherent-error suppression.
arXiv Detail & Related papers (2022-04-17T22:49:56Z) - Scalable and High-Fidelity Quantum Random Access Memory in Spin-Photon
Networks [6.540771405203322]
A quantum random access memory (qRAM) is considered an essential computing unit to enable speedups in quantum information processing.
Here, we propose a photonic integrated circuit (PIC) architecture integrated with solid-state memories as a viable platform for constructing a qRAM.
We also present an alternative scheme based on quantum teleportation and extend it to the context of quantum networks.
arXiv Detail & Related papers (2021-03-13T05:39:03Z) - Parallelising the Queries in Bucket Brigade Quantum RAM [69.43216268165402]
Quantum algorithms often use quantum RAMs (QRAM) for accessing information stored in a database-like manner.
We show a systematic method to significantly reduce the effective query time by using Clifford+T gate parallelism.
We conclude that, in theory, fault-tolerant bucket brigade quantum RAM queries can be performed approximately with the speed of classical RAM.
arXiv Detail & Related papers (2020-02-21T14:50:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.