Hardware-Efficient Quantum Random Access Memory Design with a Native Gate Set on Superconducting Platforms
- URL: http://arxiv.org/abs/2306.10250v2
- Date: Sun, 13 Oct 2024 14:59:43 GMT
- Title: Hardware-Efficient Quantum Random Access Memory Design with a Native Gate Set on Superconducting Platforms
- Authors: Yun-Jie Wang, Sheng Zhang, Tai-Ping Sun, Ze-An Zhao, Xiao-Fan Xu, Xi-Ning Zhuang, Huan-Yu Liu, Cheng Xue, Peng Duan, Yu-Chun Wu, Zhao-Yun Chen, Guo-Ping Guo,
- Abstract summary: This paper presents a hardware-efficient native gate set iSCZ, C-iSCZ for implementing bucket-brigade QRAM on superconducting platforms.
The experimental feasibility of the proposed gate set is demonstrated, showing high fidelity and reduced complexity.
- Score: 7.2616011434380665
- License:
- Abstract: Quantum Random Access Memory (QRAM) is a critical component for enabling data queries in superposition, which is the cornerstone of quantum algorithms. Among various QRAM architectures, the bucket-brigade model stands out due to its noise resilience. This paper presents a hardware-efficient native gate set {iSCZ, C-iSCZ} for implementing bucket-brigade QRAM on superconducting platforms. The experimental feasibility of the proposed gate set is demonstrated, showing high fidelity and reduced complexity. By leveraging the complementary control property in QRAM, our approach directly substitutes the conventional {SWAP, CSWAP} gates with the new gate set, eliminating decomposition overhead and significantly reducing circuit depth and gate count.
Related papers
- Fat-Tree QRAM: A High-Bandwidth Shared Quantum Random Access Memory for Parallel Queries [0.6976976250169952]
We introduce Fat-Tree QRAM, a novel query architecture capable of pipelining multiple quantum queries simultaneously.
Fat-Tree QRAM performs $O(log (N))$ independent queries in $O(log (N))$ time using $O(N)$ qubits.
arXiv Detail & Related papers (2025-02-10T18:47:16Z) - A Toffoli Gate Decomposition via Echoed Cross-Resonance Gates [0.0]
A fully functional and scalable quantum computer could transform various fields such as scientific research, material science, chemistry, and drug discovery.
Quantum hardware faces challenges including decoherence, gate infidelity, and restricted qubit connectivity.
This paper introduces a novel decomposition of the Toffoli gate using Echoed Cross-Resonance (ECR) gates.
arXiv Detail & Related papers (2025-01-04T07:55:32Z) - Quantum random access memory with transmon-controlled phonon routing [8.07618328909056]
Quantum random access memory (QRAM) promises simultaneous data queries at multiple memory locations.
We introduce a transmon-controlled phonon router and propose a QRAM implementation by connecting these routers in a tree-like architecture.
arXiv Detail & Related papers (2024-11-01T16:30:21Z) - Comparative study of quantum error correction strategies for the heavy-hexagonal lattice [41.94295877935867]
Topological quantum error correction is a milestone in the scaling roadmap of quantum computers.
The square-lattice surface code has become the workhorse to address this challenge.
In some platforms, however, the connectivities are kept even lower in order to minimise gate errors.
arXiv Detail & Related papers (2024-02-03T15:28:27Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - High-fidelity parallel entangling gates on a neutral atom quantum
computer [41.74498230885008]
We report the realization of two-qubit entangling gates with 99.5% fidelity on up to 60 atoms in parallel.
These advances lay the groundwork for large-scale implementation of quantum algorithms, error-corrected circuits, and digital simulations.
arXiv Detail & Related papers (2023-04-11T18:00:04Z) - Universal qudit gate synthesis for transmons [44.22241766275732]
We design a superconducting qudit-based quantum processor.
We propose a universal gate set featuring a two-qudit cross-resonance entangling gate.
We numerically demonstrate the synthesis of $rm SU(16)$ gates for noisy quantum hardware.
arXiv Detail & Related papers (2022-12-08T18:59:53Z) - Quantum Federated Learning with Entanglement Controlled Circuits and
Superposition Coding [44.89303833148191]
We develop a depth-controllable architecture of entangled slimmable quantum neural networks (eSQNNs)
We propose an entangled slimmable QFL (eSQFL) that communicates the superposition-coded parameters of eS-QNNs.
In an image classification task, extensive simulations corroborate the effectiveness of eSQFL.
arXiv Detail & Related papers (2022-12-04T03:18:03Z) - Hybrid Gate-Pulse Model for Variational Quantum Algorithms [33.73469431747376]
Current quantum programs are mostly compiled on the gate-level, where quantum circuits are composed of quantum gates.
pulse-level optimization has gained more attention from researchers due to their advantages in terms of circuit duration.
We present a hybrid gate-pulse model that can mitigate these problems.
arXiv Detail & Related papers (2022-12-01T17:06:35Z) - Scalable and High-Fidelity Quantum Random Access Memory in Spin-Photon
Networks [6.540771405203322]
A quantum random access memory (qRAM) is considered an essential computing unit to enable speedups in quantum information processing.
Here, we propose a photonic integrated circuit (PIC) architecture integrated with solid-state memories as a viable platform for constructing a qRAM.
We also present an alternative scheme based on quantum teleportation and extend it to the context of quantum networks.
arXiv Detail & Related papers (2021-03-13T05:39:03Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.