Leaving Some Facial Features Behind
- URL: http://arxiv.org/abs/2411.00824v1
- Date: Tue, 29 Oct 2024 02:28:53 GMT
- Title: Leaving Some Facial Features Behind
- Authors: Cheng Qiu,
- Abstract summary: This study examines how specific facial features influence emotion classification, using facial perturbations on the Fer2013 dataset.
Models trained on data with the removal of some important facial feature experienced up to an 85% accuracy drop when compared to baseline for emotions like happy and surprise.
- Score: 0.0
- License:
- Abstract: Facial expressions are crucial to human communication, offering insights into emotional states. This study examines how specific facial features influence emotion classification, using facial perturbations on the Fer2013 dataset. As expected, models trained on data with the removal of some important facial feature experienced up to an 85% accuracy drop when compared to baseline for emotions like happy and surprise. Surprisingly, for the emotion disgust, there seem to be slight improvement in accuracy for classifier after mask have been applied. Building on top of this observation, we applied a training scheme to mask out facial features during training, motivating our proposed Perturb Scheme. This scheme, with three phases-attention-based classification, pixel clustering, and feature-focused training, demonstrates improvements in classification accuracy. The experimental results obtained suggests there are some benefits to removing individual facial features in emotion recognition tasks.
Related papers
- Emotion Recognition for Challenged People Facial Appearance in Social
using Neural Network [0.0]
Face expression is used in CNN to categorize the acquired picture into different emotion categories.
This paper proposes an idea for face and enlightenment invariant credit of facial expressions by the images.
arXiv Detail & Related papers (2023-05-11T14:38:27Z) - Interpretable Explainability in Facial Emotion Recognition and
Gamification for Data Collection [0.0]
Training facial emotion recognition models requires large sets of data and costly annotation processes.
We developed a gamified method of acquiring annotated facial emotion data without an explicit labeling effort by humans.
We observed significant improvements in the facial emotion perception and expression skills of the players through repeated game play.
arXiv Detail & Related papers (2022-11-09T09:53:48Z) - CIAO! A Contrastive Adaptation Mechanism for Non-Universal Facial
Expression Recognition [80.07590100872548]
We propose Contrastive Inhibitory Adaptati On (CIAO), a mechanism that adapts the last layer of facial encoders to depict specific affective characteristics on different datasets.
CIAO presents an improvement in facial expression recognition performance over six different datasets with very unique affective representations.
arXiv Detail & Related papers (2022-08-10T15:46:05Z) - Emotion Separation and Recognition from a Facial Expression by Generating the Poker Face with Vision Transformers [57.1091606948826]
We propose a novel FER model, named Poker Face Vision Transformer or PF-ViT, to address these challenges.
PF-ViT aims to separate and recognize the disturbance-agnostic emotion from a static facial image via generating its corresponding poker face.
PF-ViT utilizes vanilla Vision Transformers, and its components are pre-trained as Masked Autoencoders on a large facial expression dataset.
arXiv Detail & Related papers (2022-07-22T13:39:06Z) - I Only Have Eyes for You: The Impact of Masks On Convolutional-Based
Facial Expression Recognition [78.07239208222599]
We evaluate how the recently proposed FaceChannel adapts towards recognizing facial expressions from persons with masks.
We also perform specific feature-level visualization to demonstrate how the inherent capabilities of the FaceChannel to learn and combine facial features change when in a constrained social interaction scenario.
arXiv Detail & Related papers (2021-04-16T20:03:30Z) - Emotion pattern detection on facial videos using functional statistics [62.997667081978825]
We propose a technique based on Functional ANOVA to extract significant patterns of face muscles movements.
We determine if there are time-related differences on expressions among emotional groups by using a functional F-test.
arXiv Detail & Related papers (2021-03-01T08:31:08Z) - Facial Expressions as a Vulnerability in Face Recognition [73.85525896663371]
This work explores facial expression bias as a security vulnerability of face recognition systems.
We present a comprehensive analysis of how facial expression bias impacts the performance of face recognition technologies.
arXiv Detail & Related papers (2020-11-17T18:12:41Z) - Learning Emotional-Blinded Face Representations [77.7653702071127]
We propose two face representations that are blind to facial expressions associated to emotional responses.
This work is motivated by new international regulations for personal data protection.
arXiv Detail & Related papers (2020-09-18T09:24:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.