AI in Investment Analysis: LLMs for Equity Stock Ratings
- URL: http://arxiv.org/abs/2411.00856v1
- Date: Wed, 30 Oct 2024 15:06:57 GMT
- Title: AI in Investment Analysis: LLMs for Equity Stock Ratings
- Authors: Kassiani Papasotiriou, Srijan Sood, Shayleen Reynolds, Tucker Balch,
- Abstract summary: This paper explores the application of Large Language Models (LLMs) to generate multi-horizon stock ratings.
Our study addresses these issues by leveraging LLMs to improve the accuracy and consistency of stock ratings.
Our results show that our benchmark method outperforms traditional stock rating methods when assessed by forward returns.
- Score: 0.2916558661202724
- License:
- Abstract: Investment Analysis is a cornerstone of the Financial Services industry. The rapid integration of advanced machine learning techniques, particularly Large Language Models (LLMs), offers opportunities to enhance the equity rating process. This paper explores the application of LLMs to generate multi-horizon stock ratings by ingesting diverse datasets. Traditional stock rating methods rely heavily on the expertise of financial analysts, and face several challenges such as data overload, inconsistencies in filings, and delayed reactions to market events. Our study addresses these issues by leveraging LLMs to improve the accuracy and consistency of stock ratings. Additionally, we assess the efficacy of using different data modalities with LLMs for the financial domain. We utilize varied datasets comprising fundamental financial, market, and news data from January 2022 to June 2024, along with GPT-4-32k (v0613) (with a training cutoff in Sep. 2021 to prevent information leakage). Our results show that our benchmark method outperforms traditional stock rating methods when assessed by forward returns, specially when incorporating financial fundamentals. While integrating news data improves short-term performance, substituting detailed news summaries with sentiment scores reduces token use without loss of performance. In many cases, omitting news data entirely enhances performance by reducing bias. Our research shows that LLMs can be leveraged to effectively utilize large amounts of multimodal financial data, as showcased by their effectiveness at the stock rating prediction task. Our work provides a reproducible and efficient framework for generating accurate stock ratings, serving as a cost-effective alternative to traditional methods. Future work will extend to longer timeframes, incorporate diverse data, and utilize newer models for enhanced insights.
Related papers
- Dynamic Uncertainty Ranking: Enhancing In-Context Learning for Long-Tail Knowledge in LLMs [50.29035873837]
Large language models (LLMs) can learn vast amounts of knowledge from diverse domains during pre-training.
Long-tail knowledge from specialized domains is often scarce and underrepresented, rarely appearing in the models' memorization.
We propose a reinforcement learning-based dynamic uncertainty ranking method for ICL that accounts for the varying impact of each retrieved sample on LLM predictions.
arXiv Detail & Related papers (2024-10-31T03:42:17Z) - TradExpert: Revolutionizing Trading with Mixture of Expert LLMs [25.243258134817054]
TradeExpert is a novel framework that employs a mix of experts (MoE) approach, using four specialized LLMs.
Our experimental results demonstrate TradeExpert's superior performance across all trading scenarios.
arXiv Detail & Related papers (2024-10-16T20:24:16Z) - Trading through Earnings Seasons using Self-Supervised Contrastive Representation Learning [1.6574413179773761]
Contrastive Earnings Transformer (CET) is a self-supervised learning approach rooted in Contrastive Predictive Coding (CPC)
Our research delves deep into the intricacies of stock data, evaluating how various models handle the rapidly changing relevance of earnings data over time and over different sectors.
CET's foundation on CPC allows for a nuanced understanding, facilitating consistent stock predictions even as the earnings data ages.
arXiv Detail & Related papers (2024-09-25T22:09:59Z) - Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach [6.112119533910774]
This paper introduces an advanced approach by employing Large Language Models (LLMs) instruction fine-tuned with a novel combination of instruction-based techniques and quantized low-rank adaptation (QLoRA) compression.
Our methodology integrates 'base factors', such as financial metric growth and earnings transcripts, with 'external factors', including recent market indices performances and analyst grades, to create a rich, supervised dataset.
This study not only demonstrates the power of integrating cutting-edge AI with fine-tuned financial data but also paves the way for future research in enhancing AI-driven financial analysis tools.
arXiv Detail & Related papers (2024-08-13T04:53:31Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
We introduce a novel approach to anomaly detection in financial data using Large Language Models (LLMs) embeddings.
Our experiments demonstrate that LLMs contribute valuable information to anomaly detection as our models outperform the baselines.
arXiv Detail & Related papers (2024-06-05T20:19:09Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
We release AlphaFin datasets, combining traditional research datasets, real-time financial data, and handwritten chain-of-thought (CoT) data.
We then use AlphaFin datasets to benchmark a state-of-the-art method, called Stock-Chain, for effectively tackling the financial analysis task.
arXiv Detail & Related papers (2024-03-19T09:45:33Z) - ChatGPT Based Data Augmentation for Improved Parameter-Efficient Debiasing of LLMs [65.9625653425636]
Large Language models (LLMs) exhibit harmful social biases.
This work introduces a novel approach utilizing ChatGPT to generate synthetic training data.
arXiv Detail & Related papers (2024-02-19T01:28:48Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Deep Stock Predictions [58.720142291102135]
We consider the design of a trading strategy that performs portfolio optimization using Long Short Term Memory (LSTM) neural networks.
We then customize the loss function used to train the LSTM to increase the profit earned.
We find the LSTM model with the customized loss function to have an improved performance in the training bot over a regressive baseline such as ARIMA.
arXiv Detail & Related papers (2020-06-08T23:37:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.