Federated Learning for Diabetic Retinopathy Diagnosis: Enhancing Accuracy and Generalizability in Under-Resourced Regions
- URL: http://arxiv.org/abs/2411.00869v1
- Date: Wed, 30 Oct 2024 23:56:56 GMT
- Title: Federated Learning for Diabetic Retinopathy Diagnosis: Enhancing Accuracy and Generalizability in Under-Resourced Regions
- Authors: Gajan Mohan Raj, Michael G. Morley, Mohammad Eslami,
- Abstract summary: Diabetic retinopathy is the leading cause of vision loss in working-age adults worldwide, yet under-resourced regions lack ophthalmologists.
Current state-of-the-art deep learning systems struggle at these institutions due to limited generalizability.
This paper explores a novel federated learning system for diabetic retinopathy diagnosis with the EfficientNetB0 architecture.
- Score: 0.3277163122167433
- License:
- Abstract: Diabetic retinopathy is the leading cause of vision loss in working-age adults worldwide, yet under-resourced regions lack ophthalmologists. Current state-of-the-art deep learning systems struggle at these institutions due to limited generalizability. This paper explores a novel federated learning system for diabetic retinopathy diagnosis with the EfficientNetB0 architecture to leverage fundus data from multiple institutions to improve diagnostic generalizability at under-resourced hospitals while preserving patient-privacy. The federated model achieved 93.21% accuracy in five-category classification on an unseen dataset and 91.05% on lower-quality images from a simulated under-resourced institution. The model was deployed onto two apps for quick and accurate diagnosis.
Related papers
- Enhancing Diabetic Retinopathy Detection with CNN-Based Models: A Comparative Study of UNET and Stacked UNET Architectures [0.0]
Diabetic Retinopathy DR is a severe complication of diabetes. Damaged or abnormal blood vessels can cause loss of vision.
The need for massive screening of a large population of diabetic patients has generated an interest in a computer-aided fully automatic diagnosis of DR.
Deep learning frameworks, particularly convolutional neural networks CNNs, have shown great interest and promise in detecting DR by analyzing retinal images.
arXiv Detail & Related papers (2024-11-02T14:02:45Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Dual Branch Deep Learning Network for Detection and Stage Grading of
Diabetic Retinopathy [2.3884184860468136]
This paper introduces a deep learning method for the detection and stage grading of diabetic retinopathy.
The proposed model is trained on a large multi-center dataset, including the APTOS 2019 dataset.
It achieves remarkable performance in diabetic retinopathy detection and stage classification.
arXiv Detail & Related papers (2023-08-19T08:41:41Z) - DRAC: Diabetic Retinopathy Analysis Challenge with Ultra-Wide Optical
Coherence Tomography Angiography Images [51.27125547308154]
We organized a challenge named "DRAC - Diabetic Retinopathy Analysis Challenge" in conjunction with the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022)
The challenge consists of three tasks: segmentation of DR lesions, image quality assessment and DR grading.
This paper presents a summary and analysis of the top-performing solutions and results for each task of the challenge.
arXiv Detail & Related papers (2023-04-05T12:04:55Z) - An Ensemble Method to Automatically Grade Diabetic Retinopathy with
Optical Coherence Tomography Angiography Images [4.640835690336653]
We propose an ensemble method to automatically grade Diabetic retinopathy (DR) images available from Diabetic Retinopathy Analysis Challenge (DRAC) 2022.
First, we adopt the state-of-the-art classification networks, and train them to grade UW- OCTA images with different splits of the available dataset.
Ultimately, we obtain 25 models, of which, the top 16 models are selected and ensembled to generate the final predictions.
arXiv Detail & Related papers (2022-12-12T22:06:47Z) - Dynamic Bank Learning for Semi-supervised Federated Image Diagnosis with
Class Imbalance [65.61909544178603]
We study a practical yet challenging problem of class imbalanced semi-supervised FL (imFed-Semi)
This imFed-Semi problem is addressed by a novel dynamic bank learning scheme, which improves client training by exploiting class proportion information.
We evaluate our approach on two public real-world medical datasets, including the intracranial hemorrhage diagnosis with 25,000 CT slices and skin lesion diagnosis with 10,015 dermoscopy images.
arXiv Detail & Related papers (2022-06-27T06:51:48Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
COVID-19 pandemic has spread rapidly and caused a shortage of global medical resources.
CNN has been widely utilized and verified in analyzing medical images.
arXiv Detail & Related papers (2022-03-24T02:09:41Z) - Diabetic Retinopathy Detection using Ensemble Machine Learning [1.2891210250935146]
Diabetic Retinopathy (DR) is among the worlds leading vision loss causes in diabetic patients.
DR is a microvascular disease that affects the eye retina, which causes vessel blockage and cuts the main source of nutrition for the retina tissues.
arXiv Detail & Related papers (2021-06-22T17:36:08Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
People with diabetes are at risk of developing diabetic retinopathy (DR)
Computer-aided DR diagnosis is a promising tool for early detection of DR and severity grading.
This dataset has 1,842 images with pixel-level DR-related lesion annotations, and 1,000 images with image-level labels graded by six board-certified ophthalmologists.
arXiv Detail & Related papers (2020-08-22T07:48:04Z) - Point-of-Care Diabetic Retinopathy Diagnosis: A Standalone Mobile
Application Approach [0.0]
Methods to exploit deep learning applications in healthcare have been proposed and implemented in this dissertation.
Deep learning and mobile application development have been integrated in this dissertation to provide an easy to use point-of-care smartphone based diagnosis of diabetic retinopathy.
arXiv Detail & Related papers (2020-01-26T11:03:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.